membrane destabilization
Recently Published Documents


TOTAL DOCUMENTS

91
(FIVE YEARS 14)

H-INDEX

22
(FIVE YEARS 4)

2021 ◽  
Vol 50 (10) ◽  
pp. 2869-2876
Author(s):  
Vipawee Dummee ◽  
Maleeya Kruatrachue ◽  
Sombat Singhakaew ◽  
Phanwimol Tanhan

The present study was undertaken to elucidate the basis of cellular reactions and to verify the suitability of Pomacea canaliculata digestive tract ultrastructure as a biomarker for assessing the Cu pollution in freshwater environments. Two-month-old P. canaliculata were exposed to 96-h lethal concentration of Cu (0.15 mg L-1) for 96 h. Electron microscope investigations showed different alterations of organelles in the epithelial cells lining the esophagus and intestine. The most striking changes were damages to the mitochondria, RER, and nucleus typified by loss of cristae and degeneration of mitochondria; degranulation and fragmentation of RER. In nucleus, karyolysis and rupture of nuclear envelope were observed. These changes were attributed to membrane destabilization and increased membrane permeability to ions under the influence of toxicants or heavy metals. These findings indicate the possibility of using the P. canaliculata as biomonitor for Cu contamination in the freshwater environment.


Author(s):  
Gustavo Penteado Battesini Carretero ◽  
Greice Kelle Viegas Saraiva ◽  
Magali Aparecida Rodrigues ◽  
Sumika Kiyota ◽  
Marcelo Porto Bemquerer ◽  
...  

In a large variety of organisms, antimicrobial peptides (AMPs) are primary defences against pathogens. BP100 (KKLFKKILKYL-NH2), a short, synthetic, and cationic AMP, is active against bacteria and displays low toxicity towards eukaryotic cells. BP100 acquires an α-helical conformation upon interaction with membranes and increases membrane permeability. Despite the volume of information available, the mechanism of action of BP100, the selectivity of its biological effects, and its applications are far from consensual. In this work, we synthesized a fluorescent BP100 analog containing naphthalimide linked to its N-terminal end, Napht-BP100 (Napht-AAKKLFKKILKYL-NH2). The fluorescence properties of naphthalimides, especially their spectral sensitivity to microenvironment changes, are well established, and their biological activities against different types of cells are known. A wide variety of techniques were used to demonstrate that a-helical Napht-BP100 was bound and permeabilized POPC and POPG LUV. Napht-BP100, different from that observed for BP100, was bound to, and permeabilized POPC LUV. With zwitterionic (POPC) and negatively charged (POPG) containing LUVs, membrane surface high peptide/lipid ratios triggered complete disruption of the liposomes in a detergent-like manner. This disruption was driven by charge neutralization, lipid aggregation, and membrane destabilization. Napht-BP100 also interacted with double-stranded DNA, indicating that this peptide could also affect other cellular processes in addition to membrane destabilization. Napht-BP100 showed superior antibacterial activity, increased hemolytic activity compared to BP100, and may constitute an efficient antimicrobial agent for dermatological use. By conjugating BP100 and naphthalimide antimicrobial properties, Napht-BP100 was bound more efficiently to the bacterial membrane and could destabilize the membrane and enter the cell by interacting with its cytoplasm- exposed DNA.


2021 ◽  
Vol 584 ◽  
pp. 19-33
Author(s):  
S. Malekkhaiat Häffner ◽  
E. Parra-Ortiz ◽  
M.W.A. Skoda ◽  
T. Saerbeck ◽  
K.L. Browning ◽  
...  

Molecules ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 36
Author(s):  
Tet Htut Soe ◽  
Kazunori Watanabe ◽  
Takashi Ohtsuki

Endosomal escape in cell-penetrating peptide (CPP)-based drug/macromolecule delivery systems is frequently insufficient. The CPP-fused molecules tend to remain trapped inside endosomes and end up being degraded rather than delivered into the cytosol. One of the methods for endosomal escape of CPP-fused molecules is photochemical internalization (PCI), which is based on the use of light and a photosensitizer and relies on photoinduced endosomal membrane destabilization to release the cargo molecule. Currently, it remains unclear how this delivery strategy behaves after photostimulation. Recent findings, including our studies using CPP-cargo-photosensitizer conjugates, have shed light on the photoinduced endosomal escape mechanism. In this review, we discuss the structural design of CPP-photosensitizer and CPP-cargo-photosensitizer conjugates, and the PCI mechanism underlying their application.


Author(s):  
Karidia Konate ◽  
Quentin Seisel ◽  
Eric Vivès ◽  
Prisca Boisguérin ◽  
Sébastien Deshayes

Sign in / Sign up

Export Citation Format

Share Document