membrane disruption
Recently Published Documents


TOTAL DOCUMENTS

401
(FIVE YEARS 123)

H-INDEX

51
(FIVE YEARS 6)

2022 ◽  
Vol 15 ◽  
Author(s):  
Manaf AlMatar ◽  
Essam A. Makky ◽  
Aizi Nor Mazila Ramli ◽  
Nesibe Ebru Kafkas ◽  
Fatih Köksal

Abstract: COVID-19, which is speedily distributed across the world and presents a significant challenge to public health, is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Following MERS coronavirus (MERS-CoV) and SARS, this is the third severe coronavirus outbreak in less than 20 years. To date, there are no exact agents and vaccines available for the treatment of COVID-19 that are clinically successful. Antimicrobial medications are effective in controlling infectious diseases. However, the extensive use of antibiotics makes microbes more resistant to drugs and demands novel bioactive agents’ development. Polysaccharides are currently commonly used in the biomedical and pharmaceutical industries for their remarkable applications. Polysaccharides appear to have a wide range of anti-virus (anti-coronavirus) and antimicrobial applications. Polysaccharides are able to induce bacterial cell membrane disruption as they demonstrate potency in binding onto the surfaces of microbial cells. Here, the antiviral mechanisms of such polysaccharides and their success in the application of antiviral infections are reviewed. Additionally, this report provides a summary of current advancements of well-recognized polysaccharides as antimicrobial and anti-biofilm agents.


2022 ◽  
Vol 8 (1) ◽  
Author(s):  
Meng-Shu Cao ◽  
Ting-Yan Zhao ◽  
Zhi-Long Song ◽  
Hong-Ting Lu ◽  
Yun Zheng ◽  
...  

AbstractStress cardiomyopathy is a major clinical complication after severe burn. Multiple upstream initiators have been identified; however, the downstream targets are not fully understood. This study assessed the role of the plasma membrane in this process and its relationship with the protease μ-calpain and tumor necrosis factor-alpha (TNF-α). Here, third-degree burn injury of approximately 40% of the total body surface area was established in rats. Plasma levels of LDH and cTnI and cardiac cell apoptosis increased at 0.5 h post burn, reached a peak at 6 h, and gradually declined at 24 h. This effect correlated well with not only the disruption of cytoskeletal proteins, including dystrophin and ankyrin-B, but also with the activation of μ-calpain, as indicated by the cleaved fragments of α-spectrin and membrane recruitment of the catalytic subunit CAPN1. More importantly, these alterations were diminished by blocking calpain activity with MDL28170. Burn injury markedly increased the cellular uptake of Evans blue, indicating membrane integrity disruption, and this effect was also reversed by MDL28170. Compared with those in the control group, cardiac cells in the burn plasma-treated group were more prone to damage, as indicated by a marked decrease in cell viability and increases in LDH release and apoptosis. Of note, these alterations were mitigated by CAPN1 siRNA. Moreover, after neutralizing TNF-α with rhTNFR:Fc, calpain activity was blocked, and heart function was improved. In conclusion, we identified μ-calpain as a trigger for severe burn-induced membrane disruption in the heart and provided evidence for the application of rhTNFR:Fc to inhibit calpain for cardioprotection.


2021 ◽  
Vol 08 ◽  
Author(s):  
Sumbla Sheikh ◽  
Alexander Sturzu ◽  
Hubert Kalbacher ◽  
Thomas Nägele ◽  
Ulrike Ernemann ◽  
...  

Background: In the study of bioactive agents from traditional medicine, mono- and sesquiterpenes represent the main ingredients of essential oils. Till now, only thymoquinone and perillyl alcohol have been clinically tested on glioblastoma. Objective: In the present study, we examined the effect of ten different essential oils on three human glioblastoma cell lines and one healthy human cell line. Methods: We used confocal laser scanning microscopy, flow cytometry, and cell growth analysis to evaluate cell morphology changes, membrane disruption effects, acute cytotoxicity and effects on the proliferation rate caused by the essential oils pinene, geraniol, eucalyptol, perillaldehyde, limonene, and linalool, perillyl alcohol, myrcene, bisabolol and valencene on human cells. Caspase 3/7 activity was measured to observe apoptosis induced by the essential oils. Results: We found that the cytotoxicity concentrations varied not only between different essential oils but also among different cell lines. Acute cytotoxicity of essential oils was based on cell membrane disruption and that HEK cells were affected to a much higher degree than the Glioblastoma cells. Vacuoles found in surviving glioblastoma cells appeared to be a factor in this effect. Conclusion: Caspase activity did not correlate with the membrane damage observed in the flow cytometry experiments. This is especially evident in the HEK cells that only showed apoptosis with two out of ten essential oils.


2021 ◽  
Author(s):  
Andres Sanchez-Ruiz ◽  
Gonzalo Colmenarejo

Positive outcomes in biochemical and biological assays of food compounds may appear due to the well-described capacity of some compounds to form colloidal aggregates that adsorb proteins, resulting in their denaturation and loss of function. This phenomenon can lead to wrongly ascribing mechanisms of biological action for these compounds (false positives), as the effect is non-specific and promiscuous. Similar false positives can show up due to chemical (photo)reactivity, redox cycling, metal chelation, interferences with the assay technology, membrane disruption, etc., which are more frequently observed when the tested molecule has some definite interfering substructures. Although discarding false positives can be achieved experimentally, it would be very useful to have in advance a prognostic value for possible aggregation and/or interference, based only in the chemical structure of the compound tested, in order to be aware of possible issues, help in prioritization of compounds to test, design of appropriate assays, etc. Previously, we applied cheminformatic tools derived from the drug discovery field to identify putative aggregators and interfering substructures in a database of food compounds, the FooDB, comprising 26457 molecules at that time. Here we provide an updated account of that analysis based on a current, much-expanded version of the FooDB, comprising a total of 70855 compounds. In addition, we also apply a novel machine learning model (the SCAM Detective) to predict aggregators with 46%-53% increased accuracies over previous models. In this way, we expect to provide the researchers in the mode of action of food compounds with a much improved, robust, and widened set of putative aggregators and interfering substructures of food compounds.


2021 ◽  
Author(s):  
Christofer M Welsh ◽  
Lorissa J Smulan ◽  
Matthew J Fanelli ◽  
Dominuque S Lui ◽  
Amy Karol Walker

Immune-linked genes (ILGs) are activated in response to pathogens but can also be activated by lipid imbalance. Why pathogen attack and metabolic changes both impact ILG activation is unclear. Organelles in the secretory pathway have distinct protein and lipid components and genetically separable stress programs. These stress pathways activate restorative transcriptional programs when lipid ratios become unbalanced or during dysregulated protein folding and trafficking. We find that ILGs are specifically activated when membrane phosphatidylcholine ratios change in the secretory pathway. Consistent with this result, disruption of Golgi function in mutations targeting the ADP-ribosylation factor ARF-1 also activates ILG expression. Since increased protein secretion is altered by metabolic changes and pathogen responses, our data argue that ILG upregulation is a conserved, coordinated response to changes in trafficking resulting from intrinsic cues (lipid changes) or extrinsic stimulation (during the immune response). These findings uncover important and previously unexplored links between metabolism and the stress response.


2021 ◽  
Author(s):  
Matthew Smith ◽  
Daniel Sievenpiper

<p>· We propose multi-loci and multi-site current patterning (sequential or simultaneous) for precise, rapid and repeatable steering for improved neuronal targeting.</p><p>· Here we demonstrate these improvements by using a unique pixel cell for excitation synthesis as enabled by a three-layer dense magnetic coil array that is mapped to a hexagonal grid with cubic coordinates.</p><p>· We validate the theory with supporting simulations, experimental results and a scalable electronics design that can address a relevant range of larger coil diameters, higher power levels and topologies.</p><p><a></a></p><p>· Precise, rapid and repeatable patterns potentially offer new modalities for noninvasive neuromodulation (suprathreshold and subthreshold) and adjacent biomagnetic applications such as tumor cell membrane disruption [1], and magnetic drug delivery [2].</p>


2021 ◽  
Author(s):  
Matthew Smith ◽  
Daniel Sievenpiper

<p>· We propose multi-loci and multi-site current patterning (sequential or simultaneous) for precise, rapid and repeatable steering for improved neuronal targeting.</p><p>· Here we demonstrate these improvements by using a unique pixel cell for excitation synthesis as enabled by a three-layer dense magnetic coil array that is mapped to a hexagonal grid with cubic coordinates.</p><p>· We validate the theory with supporting simulations, experimental results and a scalable electronics design that can address a relevant range of larger coil diameters, higher power levels and topologies.</p><p><a></a></p><p>· Precise, rapid and repeatable patterns potentially offer new modalities for noninvasive neuromodulation (suprathreshold and subthreshold) and adjacent biomagnetic applications such as tumor cell membrane disruption [1], and magnetic drug delivery [2].</p>


Sign in / Sign up

Export Citation Format

Share Document