Experimental Study and Mathematical Modeling of Propane-SCR-NOx Using Group Method of Data Handling and Artificial Neural Network

2016 ◽  
Vol 14 (2) ◽  
pp. 559-569 ◽  
Author(s):  
N. Ghasemian ◽  
H. Nourmoradi

Abstract In this study, the catalytic behavior of protonated clinoptilolite in propane-SCR-NOx was investigated. The experiments were carried out in the temperature range of 200–500 °C as a function of zeolite mesh size 20, 35 and 70 at different weights of zeolite (0.45–1 g) and flow rates (300–600 ml/min) and consequently at various gas hourly space velocities (GHSV). Group method of data handling (GMDH) and artificial neural network (ANN) system were applied for mathematical modeling of NOx conversion to N2 in propane-SCR-NOx. The operating temperature (T), volumetric flow rate (F) and the weight of clinoptilolite zeolite (W) and the conversion of NOx to N2 (X) were considered as the inputs and output, respectively. In order to evaluate the models performance, conversions of NOx obtained from the GMDH and ANN systems were compared with those obtained from the experimental method. It is concluded that the ANN could successively estimate the conversion and the results were in a good agreement with the experimental data.

2015 ◽  
Vol 206 ◽  
pp. 293-299 ◽  
Author(s):  
Carlos Eduardo de Araújo Padilha ◽  
Carlos Alberto de Araújo Padilha ◽  
Domingos Fabiano de Santana Souza ◽  
Jackson Araújo de Oliveira ◽  
Gorete Ribeiro de Macedo ◽  
...  

Author(s):  
Ugrasen Gonchikar ◽  
Ravindra Holalu Venkatadas ◽  
Naveen Prakash Goravi Vijaya Dev ◽  
Keshavamurthy Ramaiah ◽  
Giridhara Gudekota

Wire Electrical Discharge Machining (WEDM) is a specialized thermo electrical machining process capable of accurately machining parts with varying hardness or complex shapes. Present study outlines the comparison of machining performances in the wire electric discharge machining using group method data handling technique and artificial neural network. HCHCr material was selected as a work material. This work material was machined using different process parameters based on Taguchi’s L27 standard orthogonal array. Parameters such as pulse-on time, pulse-off time, current and bed speed were varied. The response variables measured for the analysis are surface roughness, volumetric material removal rate and dimensional error. Machining performances were compared using sophisticated mathematical models viz., Group Method of Data Handling (GMDH) technique and Artificial Neural Network (ANN). GMDH is ideal for complex, unstructured systems where the investigator is only interested in obtaining a high-order input-output relationship. Also, the method is heuristic in nature and is not based on a solid foundation as regression analysis. The GMDH algorithm is designed to learn the process by training the algorithm with the experimental data. The experimental observations are divided into two sets viz., the training set and testing set. The training set is used to make the GMDH learn the process and the testing set will check the performance of GMDH. Different models were obtained by varying the percentage of data in the training set and the best model were selected from these, viz., 50%, 62.5% & 75%. The best model was selected from the said percentages of data. Number of variables selected at each layer is usually taken as a fixed number or a constantly increasing number. It is usually given as fractional increase in number of independent variables present in the previous level. Three different criterion functions, viz., Root Mean Square (Regularity) criterion, Unbiased criterion and Combined criterion were considered for estimation. The choice of the criterion for node selection is another important parameter for proper modeling. The Artificial Neural Network is used to study and predict the machining responses. Input data are fed into the neural network and corresponding weights and bias are extracted. Then weights and bias are integrated in the program which is used to calculate and predict the machining responses. Estimation of machining performances was obtained by using ANN for various cutting conditions. ANN estimates were obtained for various percentages of total data in the training set viz., 50%, 60% & 70%. The best model was selected from the said percentages of data. Estimation and comparison of machining performances were carried out using GMDH and ANN. Estimates from GMDH and ANN were compared and it was observed that ANN with 70% of data in training set gives better results than GMDH.


Author(s):  
Ugrasen Gonchikar ◽  
Holalu Venkatdas Ravindra ◽  
Rudreshi Addamani ◽  
Prathik Jain Sudhir

Abstract Wire Electrical Discharge Machining (WEDM) is a specialized thermal machining process capable of accurately machining parts with varying hardness or complex shapes, which have sharp edges that are very difficult to be machined by the main stream machining processes. This study outlines the development of model and its application to estimation of machining performances using Group Method Data Handling Technique (GMDH) and Artificial Neural Network (ANN). Experimentation was performed as per Taguchi’s L’16 orthogonal array for Stavax (modified AISI 420 steel) material. Each experiment has been performed under different cutting conditions of pulse-on, pulse-off, current and bed speed. Among different process parameters voltage and flush rate were kept constant. Molybdenum wire having diameter of 0.18 mm was used as an electrode. Four responses namely accuracy, surface roughness, Volumetric Material Removal Rate (VMRR) and Electrode Wear (EW) have been considered for each experiment. Estimation and comparison of responses was carried out using GMDH and ANN. Group method data handling technique is ideal for complex, unstructured systems where the investigator is only interested in obtaining a high-order input-output relationship. Also, the method is heuristic in nature and is not based on a solid foundation as in regression analysis. The GMDH algorithm is designed to learn the process by training the algorithm with the experimental data. The experimental observations are divided into two sets viz., the training set and testing set. The training set is used to make the GMDH learn the process and the testing set will check the performance of GMDH. Different models can be obtained by varying the percentage of data in the training set and the best model can be selected from these, viz., 50%, 62.5% & 75%. The best model is selected from the said percentages of data. Number of variables selected at each layer is usually taken as a fixed number or a constantly increasing number. It is usually given as fractional increase in number of independent variables present in the previous level. Three different criterion functions, viz., Root Mean Square (Regularity) criterion, Unbiased criterion and Combined criterion were considered for estimation. The choice of the criterion for node selection is another important parameter for proper modeling. The Artificial Neural Network is used to study and predict the machining responses. Input data are fed into the neural network and corresponding weights and bias are extracted. Then weights and bias are integrated in the program which is used to calculate and predict the machining responses. Estimation of machining performances was obtained by using ANN for various cutting conditions. ANN estimates were obtained for various percentages of total data in the training set viz., 50%, 60% & 70%. The best model is selected from the said percentages of data. Estimation and comparison of machining performances were carried out using GMDH and ANN. Estimates from GMDH and ANN were compared and it was observed that ANN with 70% of data in training set gives better results than GMDH.


2019 ◽  
Vol 12 (3) ◽  
pp. 145 ◽  
Author(s):  
Epyk Sunarno ◽  
Ramadhan Bilal Assidiq ◽  
Syechu Dwitya Nugraha ◽  
Indhana Sudiharto ◽  
Ony Asrarul Qudsi ◽  
...  

2020 ◽  
Vol 38 (4A) ◽  
pp. 510-514
Author(s):  
Tay H. Shihab ◽  
Amjed N. Al-Hameedawi ◽  
Ammar M. Hamza

In this paper to make use of complementary potential in the mapping of LULC spatial data is acquired from LandSat 8 OLI sensor images are taken in 2019.  They have been rectified, enhanced and then classified according to Random forest (RF) and artificial neural network (ANN) methods. Optical remote sensing images have been used to get information on the status of LULC classification, and extraction details. The classification of both satellite image types is used to extract features and to analyse LULC of the study area. The results of the classification showed that the artificial neural network method outperforms the random forest method. The required image processing has been made for Optical Remote Sensing Data to be used in LULC mapping, include the geometric correction, Image Enhancements, The overall accuracy when using the ANN methods 0.91 and the kappa accuracy was found 0.89 for the training data set. While the overall accuracy and the kappa accuracy of the test dataset were found 0.89 and 0.87 respectively.


2020 ◽  
Vol 38 (2A) ◽  
pp. 255-264
Author(s):  
Hanan A. R. Akkar ◽  
Sameem A. Salman

Computer vision and image processing are extremely necessary for medical pictures analysis. During this paper, a method of Bio-inspired Artificial Intelligent (AI) optimization supported by an artificial neural network (ANN) has been widely used to detect pictures of skin carcinoma. A Moth Flame Optimization (MFO) is utilized to educate the artificial neural network (ANN). A different feature is an extract to train the classifier. The comparison has been formed with the projected sample and two Artificial Intelligent optimizations, primarily based on classifier especially with, ANN-ACO (ANN training with Ant Colony Optimization (ACO)) and ANN-PSO (training ANN with Particle Swarm Optimization (PSO)). The results were assessed using a variety of overall performance measurements to measure indicators such as Average Rate of Detection (ARD), Average Mean Square error (AMSTR) obtained from training, Average Mean Square error (AMSTE) obtained for testing the trained network, the Average Effective Processing Time (AEPT) in seconds, and the Average Effective Iteration Number (AEIN). Experimental results clearly show the superiority of the proposed (ANN-MFO) model with different features.


Sign in / Sign up

Export Citation Format

Share Document