work material
Recently Published Documents


TOTAL DOCUMENTS

163
(FIVE YEARS 33)

H-INDEX

21
(FIVE YEARS 3)

Author(s):  
Samadhan Suresh Mule

Abstract: Friction drilling is a novel hole-making method that can be performed on thin-walled sheets. In recent years of study, the thrust force and torque under numerous process conditions were performed to demonstrate the benefits. In recent years of study, the thrust force and torque under various process conditions were performed to demonstrate the benefits. Our objective is to review the behavior of the material with the use of friction drilling by variation of thickness, Spindle speed, and feed rate. Our objective is to study the behavior of the material with the use of friction drilling by variation of thickness, Spindle speed, and feed rate. The friction between a rapid rotating conical tool and a sheet metal workpiece generates heat to soften and displace the metal to form a whole. Friction drilling is a non-traditional hole-making process in which a conical rotating tool is applied to penetrate the workpiece and make the outlet in a single step, without generating chips. the process relies on the heat generated thanks to the resistance force between tool and workpiece, to soften, penetrate and deform the work material into a bushing shape. Generally, friction drilling is applied to thin-walled materials owing to increasing connection length and clamping strength. The generated resistance heat cause softening piece of work material, increase its ductility, and providing it to flow, that extruded onto both the front and back sides of the holes. Keywords: Friction Drilling, Conical Tool, Material Displace, Temperature, Hardness & Thickness.


Author(s):  
Masaya Gemma ◽  
◽  
Jiayu Liu ◽  
Satoshi Sakamoto ◽  
◽  
...  

In this study, the main objective is to clarify the relationship between the material properties of the work material and the grooving properties for various work materials from hard and brittle materials to metallic materials. In this paper, in order to investigate the grinding characteristics of diamond electroplated wire tools, including the wear characteristics, we conducted grooving experiments with borosilicate glass (Pyrex), which is a kind of hard and brittle material, and aluminum alloy (A5052), and tough pitch copper (C1100), a kind of metallic material, using diamond electroplated wire tools in a work material rotation method. As a result of the grooving experiments, it was clarified that the grooving characteristics of the work materials were influenced by the hardness and brittle behavior of the materials. The groove depth is influenced by the hardness and brittleness behavior of the material. When machining hard materials, the groove depth increases slowly in the initial stage of machining due to the poor bite of the wire tool, but increases rapidly as the machining progresses. On the other hand, the groove width does not depend on the machining time or speed, but is influenced by the hardness of the material and the ease with which plastic deformation occurs. The wear of the wire tool is also influenced by the hardness and brittleness of the material. In the machining of hard materials, the wear caused by stray wire and vibration in the early stages of machining was significant. The grinding ratio calculated from the ratio of the groove depth to the amount of grinding has a very different trend for hard and brittle materials and metallic materials. In the machining of hard and brittle materials, the amount of machining increased rapidly as machining progressed, so the grinding ratio also increased, but in metallic materials, the amount of machining itself was small and the grinding ratio did not increase. For A5052, the grinding ratio tended to decrease as machining progressed. Future work In the future, it is necessary to clarify the machining conditions to reduce the wear caused by stray wire tools and vibration during the initial machining of hard materials.


2021 ◽  
Vol 21 (9) ◽  
pp. 4891-4896
Author(s):  
Uk Su Kim ◽  
Seung-Yub Baek ◽  
Tae-Wan Kim ◽  
Jeong Woo Park

This study demonstrates a method to improve the surface quality by adding artificial vibration to the electrolyte in electrochemical polishing (ECP, electropolishing). ECP is a typical non-contact surface polishing process that has been used to improve surface quality without leaving any of the mechanical scratch marks that can arise when applying mechanical processes. ECP can polish work material via electrochemical dissolution between the surfaces of an anode and a cathode, and irregular defects are generated on the surface by impurities and bubbles generated during machining. This study confirms that our novel ECP method yields improved results over conventional ECP based on experiments using vibration electrochemical polishing (VECP) with ultrasonic vibrations. VECP minimizes nanoscale surface defects, improves surface roughness, makes it possible to quickly remove materials at nanoscale by increasing the material removal rate (MRR). Under high current density, where the electrochemical relatively reaction is active, value of the current is increased when ultrasonic vibration is added. The localized roughness of the work material was measured by atomic force microscopy (AFM) according to various electrical conditions. In addition, we also compared the overall surface quality and productivity to those obtained by conventional ECP.


2021 ◽  
Vol 15 (4) ◽  
pp. 448-456
Author(s):  
Takashi Inoue ◽  
◽  
Masahiro Hagino ◽  
Kazushige Tokuno ◽  
Ryo Suboi ◽  
...  

In recent years, magnesium-based materials have become expected to replace conventional engineering plastics as next-generation industrial materials to protect the global environment. However, in the production technology, problems of cracking and unstable accuracy in drilled hole shapes persist in plastic molding and machine tool processing; many studies have been conducted to address these problems. In dry machining ignition can be caused by the material, so wet machining is the prevalent method. However, it is necessary to establish a machining method with improved environmental parameters, considering the impact of oil mist and waste oil treatment on woks. In this study, the relationship between machining temperature and the accuracy of hole shapes in magnesium alloy AZ31 is investigated with four types of drills: high-speed steel, cemented carbide (K-Base), diamond-like carbon (DLC; K-Base), and TiN-coated cemented carbide (K-Base). The drill tip angle is set to 116°, 118°, or 120°. The work material used is the extruded AZ31 magnesium alloy. To evaluate the hole shape accuracy, squares of 80 × 80 mm are used. The cutting temperature is measured over an area of 12 × 30 mm. The work material is drilled using a dry method with a 3-mm-diameter drill having the aspect ratio (L/D) of 10. The tool protrusion length of 50 mm and cutting speed of 20 m/min are fixed, and the tool feed rate and drill step amount are changed. The experiment is repeated 3 times. The burr generated around the loophole on the back surface of the test material after the test is evaluated with a criterion burr height H of 0.02 mm. Furthermore, the average roughness (Ra) of the centerline is measured on the inner surface of the hole with a contact-type roughness meter. The results show that when using the three drill point angles of 116°, 118°, and 120° in the drill step, no burrs form at the exit of the drill hole. Carbide tools form burrs when the feed rate exceeds 30 mm/min and the step amount exceeds 20 mm. TiN tools are highly accurate up to a tip angle of 118°, while DLC tools have lower cutting forces and yield better finished surfaces than the other tools.


2021 ◽  
pp. 76-81
Author(s):  

The results of research on improving the design of wood-cutting mills are presented. A model of interaction of elements of an assembled cutting tool has been developed to select its structure at the design stage. Initial data and conditions of contact interaction are obtained for modeling thermodynamic processes in the knife attachment unit. Keywords: easy-to-work material, wood-cutting interlocking side mill, attachment point, cutting element, conditions of contact interaction. [email protected]


2021 ◽  
Author(s):  
Vivek Sharma

Abstract Electrochemical discharge machining (ECDM) is a novel technique for machining non-conductive materials like quartz, soda lime glass, ceramics etc. It combines the machining attributes of the electric discharge machining (EDM) and electrochemical machining (ECM) simultaneously in a single process. Despite numerous experimental studies, few studies are reported covering analytical aspects of the ECDM process. The present study focusses on the development of finite element based thermal model for analyzing the material removal of the different work materials. The model is validated by comparing it with existing literature and a comparison of the different models based on different heat input i.e., uniform distribution and Gaussian distribution is also performed. Results revealed that the material removal rate (MRR) predicted using Gaussian distribution exhibits fair agreement with the earlier reported results. Moreover, the comparative study on MRR is performed using gaussian heat distribution for soda lime glass and quartz material. It is observed that under similar machining conditions, MRR of soda lime glass is higher than the quartz material. The MRR of the both the work materials increases with the increase in electrolyte concentration due to increase in total heat input over the work material.


2021 ◽  
Vol 15 (1) ◽  
pp. 24-33
Author(s):  
Hao Yang ◽  
Katsuhiko Sakai ◽  
Hiroo Shizuka ◽  
Yuji Kurebayashi ◽  
Kunio Hayakawa ◽  
...  

Increasing use of NiTi alloy products makes it very important to improve the cutting performance of this material. This study presents the effect of cutting speed on radial shape recovery of work material which is supposed to deteriorate the dimension accuracy in cutting process of super-elastic NiTi alloy. The shape recovery of work material was investigated at the beginning of cutting process, during the stable part of cutting process and after feed stops respectively utilizing a high-speed camera and a cutting force dynamometer in orthogonal cutting experiments at various cutting speeds. The mechanism of the shape recovery was investigated by analyzing the crystallization phase state of work material before and after cutting using XRD and measuring the temperature distributions on the end surface of work material during orthogonal cutting experiments using non-reversible temperature indicating paints correspondingly. Results show that at relatively low cutting speed, the temperature of work material near the cutting point did not exceed the threshold temperature of phase transformation, and thus work material generated obvious shape recovery throughout the whole cutting process due to the phase transformation. Increasing cutting speed could increase the temperature of work material; when cutting speed increased to 100 m/min, the temperature of work material near the cutting point exceeded the threshold temperature of phase transformation, thus work material did not generate obvious shape recovery because it could not undergo any form of phase transformation during the stable part of cutting process and after feed stops. Consequently, increasing cutting speed could be proposed as an approach to improve dimension accuracy by inhibiting shape recovery of work material in cutting process of NiTi alloy.


Sign in / Sign up

Export Citation Format

Share Document