A Review of Voltage Stability Assessment Techniques with an Improved Voltage Stability Indicator

2015 ◽  
Vol 16 (2) ◽  
pp. 107-115 ◽  
Author(s):  
Mir Sayed Shah Danish ◽  
Atsushi Yona ◽  
Tomonobu Senjyu

Abstract A blackout can take place in entire power system or a part of the system due to extreme voltage instability (voltage collapse) that can appear abruptly. Instability prediction and continuous monitoring of the power system performance is, therefore, known exigent. This paper is conducted with a broad overview of the voltage stability indices, which are previously studied in the literature, and have the same foundation during their formulation. Afterward, an improved voltage stability indicator is introduced as a result of the multi-criteria integration and enhancement of the original indices by employing linear algebra methods. It is found that the proposed algorithm can overcome on the probable limitations from calculating point view. Then comparative analysis of the indices is presented in order to reach a unique consensus about the typical techniques of modal analysis (sensitivity, eigenvalue, right eigenvectors, and bus participation factor) as a precise algorithm. Finally, the IEEE 14-bus, and 30-bus test systems are selected to verify the algorithm, and compare the performance of the improved indicator approach with the existing indices.

2019 ◽  
Vol 49 (4) ◽  
pp. 225-232
Author(s):  
Jaime Dwaigth Pinzon Casallas ◽  
D. G. Colomé

This paper presents a novel methodology to identify critical contingencies that produce short-term voltage stability problems (STVS). The proposed methodology classifies the state of the pow-er system for each contingency, assessing the voltage stability of the post-contingency dynamic response from the calculation of the maximal Lyapunov expo-nent (MLE) and dynamic voltage indices at each bus and the whole system. In order to determine the crit-ical contingencies, the values of the indices and the results of the classification of the post-contingency state are statistically analysed. The methodology is tested in the New England 39-bus system, obtaining satisfactory results in relation to the identification not only of the most critical contingencies but also of vulnerable buses to voltage instability. New contri-butions of this work are the contingency classifica-tion methodology, the algorithm for calculating dy-namic indices and the method of classification of the operating state as a function of the STVS problem magnitude.


2013 ◽  
Vol 811 ◽  
pp. 643-646
Author(s):  
Xue Song Zhou ◽  
Mo Chen ◽  
You Jie Ma

In order to study on the problem of voltage stability of power system, this paper describes the static bifurcation analysis and the dynamic bifurcation analysis in voltage stabilization analysis of power system and its relationship with the voltage stability,discusses the voltage instability caused by two main bifurcation formal definition, the occurrence of the conditions and the calculation of the bifurcation point, and points out advantages and disadvantages of various algorithms. Finally the paper looks forward to further study of the bifurcation theory in terms of voltage stability.


Author(s):  
Thang Van Nguyen ◽  
Y. Minh Nguyen ◽  
Yong Tae Yoon

Abstract This paper proposes a new method for assessing static voltage stability based on the local loadability boundary or P- Q curve in two dimensional power parameter space. The proposed method includes three main steps. The first step is to determine the critical buses and the second step is building the local loadability boundary or the saddle node bifurcation set for those critical buses. The final step is assessing the static voltage stability through the distance from current operating point to the boundary. The critical buses are defined through the right eigenvector by direct method. The boundary obtained by the proposed method that is combining a variation of standard direct method and Thevenin equivalent model of electric power system is a quadratic curve. And finally the distance is computed through the Euclid norm of normal vector of the boundary at the closest saddle node bifurcation point. The advantage of the proposed method is that it keeps the advantages of both efficient methods, the accuracy of the direct method and simple of Thevenin Equivalent based method. Thus, the proposed method holds some promise in terms of performing the real time voltage stability assessment of power system. Test results of New England 39 bus system are presented to show the effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document