On successive linearization method for differential equations with nonlinear conditions

Author(s):  
Ahmed A. Khidir ◽  
Abdulrahman F. Aljohani

Abstract This paper presents a new technique for solving linear and nonlinear boundary value problems subject to linear or nonlinear conditions. The technique is based on the blending of the Chebyshev pseudospectral method. The rapid convergence and effectiveness are verified by several linear and nonlinear examples, and results are compared with the exact solutions. Our results show a remarkable improvement in the convergence of the results when compared with exact solutions.

2008 ◽  
Vol 2008 ◽  
pp. 1-13 ◽  
Author(s):  
A. Barari ◽  
M. Omidvar ◽  
D. D. Ganji ◽  
Abbas Tahmasebi Poor

Variational iteration method (VIM) is applied to solve linear and nonlinear boundary value problems with particular significance in structural engineering and fluid mechanics. These problems are used as mathematical models in viscoelastic and inelastic flows, deformation of beams, and plate deflection theory. Comparison is made between the exact solutions and the results of the variational iteration method (VIM). The results reveal that this method is very effective and simple, and that it yields the exact solutions. It was shown that this method can be used effectively for solving linear and nonlinear boundary value problems.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Jae-Young Choi ◽  
Dong Kyun Im ◽  
Jangho Park ◽  
Seongim Choi

A mapped Chebyshev pseudospectral method is extended to solve three-dimensional unsteady flow problems. As the classical Chebyshev spectral approach can lead to numerical instabilities due to ill conditioning of the spectral matrix, the Chebyshev points are evenly redistributed over the domain by an inverse sine mapping function. The mapped Chebyshev pseudospectral method can be used as an alternative time-spectral approach that uses a Chebyshev collocation operator to approximate the time derivative terms in the unsteady flow governing equations, and the method can make general applications to both nonperiodic and periodic problems. In this study, the mapped Chebyshev pseudospectral method is employed to solve three-dimensional periodic problem to verify the spectral accuracy and computational efficiency with those of the Fourier pseudospectral method and the time-accurate method. The results show a good agreement with both of the Fourier pseudospectral method and the time-accurate method. The flow solutions also demonstrate a good agreement with the experimental data. Similar to the Fourier pseudospectral method, the mapped Chebyshev pseudospectral method approximates the unsteady flow solutions with a precise accuracy at a considerably effective computational cost compared to the conventional time-accurate method.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Ahmed A. Khidir

We present a new modification of the homotopy perturbation method (HPM) for solving nonlinear boundary value problems. The technique is based on the standard homotopy perturbation method, and blending of the Chebyshev pseudospectral methods. The implementation of the new approach is demonstrated by solving the Jeffery-Hamel flow considering the effects of magnetic field and nanoparticle. Comparisons are made between the proposed technique, the standard homotopy perturbation method, and the numerical solutions to demonstrate the applicability, validity, and high accuracy of the present approach. The results demonstrate that the new modification is more efficient and converges faster than the standard homotopy perturbation method.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Ishfaq Ahmad Ganaie ◽  
Shelly Arora ◽  
V. K. Kukreja

Cubic Hermite collocation method is proposed to solve two point linear and nonlinear boundary value problems subject to Dirichlet, Neumann, and Robin conditions. Using several examples, it is shown that the scheme achieves the order of convergence as four, which is superior to various well known methods like finite difference method, finite volume method, orthogonal collocation method, and polynomial and nonpolynomial splines and B-spline method. Numerical results for both linear and nonlinear cases are presented to demonstrate the effectiveness of the scheme.


Sign in / Sign up

Export Citation Format

Share Document