Valuation of the American put option as a free boundary problem through a high-order difference scheme

Author(s):  
Murat Sari ◽  
Seda Gulen

Abstract Valuation of the American options encountered commonly in finance is quite difficult due to the possibility of early exercise alternatives. Since an exact solution for the American options does not exist, effective numerical methods are needed to understand the behavior of option pricing models. Therefore, in this paper, a new approach based on a high-order difference scheme is proposed to discuss the valuation of an American put option as a free boundary problem. Using a front-fixing approach that transforms the unknown free boundary (optimal stopping) into a fixed one, a sixth-order finite difference scheme (FD6) in space and a third-order strong-stability preserving Runge–Kutta (SSPRK3) in time are applied to the model converted to a nonlinear partial differential equation. The computed results revealed that the combined method is seen to attempt to pull up the capacity of the algorithm to achieve higher accuracy. It is seen that the quantitative and qualitative results produced by the method proposed with minimal computational effort are sufficiently accurate and meaningful. Therefore, this article provides some new insights about the physical characteristics of financial problems and such realistic phenomena.

2001 ◽  
Vol 1 (1) ◽  
pp. 39-45 ◽  
Author(s):  
Ghada Alobaidi ◽  
Roland Mallier

An American put option is a derivative financial instrument that gives its holder the right but not the obligation to sell an underlying security at a pre-determined price. American options may be exercised at any time prior to expiry at the discretion of the holder, and the decision as to whether or not to exercise leads to a free boundary problem. In this paper, we examine the behavior of the free boundary close to expiry. Working directly with the underlying PDE, by using asymptotic expansions, we are able to deduce this behavior of the boundary in this limit.


2020 ◽  
Vol 13 (6) ◽  
pp. 124
Author(s):  
Anna Clevenhaus ◽  
Matthias Ehrhardt ◽  
Michael Günther ◽  
Daniel Ševčovič

As the American early exercise results in a free boundary problem, in this article we add a penalty term to obtain a partial differential equation, and we also focus on an improved definition of the penalty term for American options. We replace the constant penalty parameter with a time-dependent function. The novelty and advantage of our approach consists in introducing a bounded, time-dependent penalty function, enabling us to construct an efficient, stable, and adaptive numerical approximation scheme, while in contrast, the existing standard approach to the penalisation of the American put option-free boundary problem involves a constant penalty parameter. To gain insight into the accuracy of our proposed extension, we compare the solution of the extension to standard reference solutions from the literature. This illustrates the improvement of using a penalty function instead of a penalising constant.


MAT Serie A ◽  
2001 ◽  
Vol 5 ◽  
pp. 37-41
Author(s):  
Claudia Lederman ◽  
Juan Luis Vázquez ◽  
Noemí Wolanski

2008 ◽  
Vol 05 (04) ◽  
pp. 785-806
Author(s):  
KAZUAKI NAKANE ◽  
TOMOKO SHINOHARA

A free boundary problem that arises from the physical phenomenon of "peeling a thin tape from a domain" is treated. In this phenomenon, the movement of the tape is governed by a hyperbolic equation and is affected by the peeling front. We are interested in the behavior of the peeling front, especially, the phenomenon of self-excitation vibration. In the present paper, a mathematical model of this phenomenon is proposed. The cause of this vibration is discussed in terms of adhesion.


Sign in / Sign up

Export Citation Format

Share Document