scholarly journals Growing Season Length as a Key Factor of Cumulative Net Ecosystem Exchange Over the Pine Forest Ecosystems in Europe

2015 ◽  
Vol 29 (2) ◽  
pp. 129-135 ◽  
Author(s):  
Alina Danielewska ◽  
Marek Urbaniak ◽  
Janusz Olejnik

Abstract The Scots pine is one of the most important species in European and Asian forests. Due to a widespread occurrence of pine forests, their significance in the energy and mass exchange between the Earth surface and the atmosphere is also important, particularly in the context of climate change and greenhouse gases balance. The aim of this work is to present the relationship between the average annual net ecosystem productivity and growing season length, latitude and air temperature (tay) over Europe. Therefore, CO2 flux measurement data from eight European pine dominated forests were used. The observations suggest that there is a correlation between the intensity of CO2 uptake or emission by a forest stand and the above mentioned parameters. Based on the obtained results, all of the selected pine forest stands were CO2 sinks, except a site in northern Finland. The carbon dioxide uptake increased proportionally with the increase of growing season length (9.212 g C m-2 y-1 per day of growing season, R2 = 0.53, p = 0.0399). This dependency showed stronger correlation and higher statistical significance than both relationships between annual net ecosystem productivity and air temperature (R2 = 0.39, p = 0.096) and annual net ecosystem productivity and latitude (R2 = 0.47, p = 0.058). The CO2 emission surpassed assimilation in winter, early spring and late autumn. Moreover, the appearance of late, cold spring and early winter, reduced annual net ecosystem productivity. Therefore, the growing season length can be considered as one of the main factor affecting the annual carbon budget of pine forests.

2011 ◽  
Vol 8 (6) ◽  
pp. 1667-1678 ◽  
Author(s):  
W.-J. Zhang ◽  
H.-M. Wang ◽  
F.-T. Yang ◽  
Y.-H. Yi ◽  
X.-F. Wen ◽  
...  

Abstract. The impact of air temperature in early growing season on the carbon sequestration of a subtropical coniferous plantation was discussed through analyzing the eddy flux observations at Qianyanzhou (QYZ) site in southern China from 2003 to 2008. This site experienced two cold early growing seasons (with temperature anomalies of 2–5 °C) in 2005 and 2008, and a severe summer drought in 2003. Results indicated that the low air temperature from January to March was the major factor controlling the inter-annual variations in net carbon uptake at this site, rather than the previously thought summer drought. The accumulative air temperature from January to February showed high correlation (R2=0.970, p<0.001) with the annual net ecosystem production (NEP). This was due to the controls of early-month temperature on the plant phenology developing and the growing season length at this subtropical site. The cold spring greatly shortened the growing season length and therefore reduced the carbon uptake period. The eddy flux observations showed a carbon loss of 4.04 g C m−2 per growing-season day at this coniferous forest site. On the other hand, the summer drought also reduced the net carbon uptake strength because the photosynthesis was more sensitive to water deficit stress than the ecosystem respiration. However, the impact of summer drought occurred within a relatively shorter period and the carbon sequestration went back to the normal level once the drought was relieved.


2015 ◽  
Vol 30 (4) ◽  
pp. 359-370 ◽  
Author(s):  
Carlos Antonio Costa dos Santos ◽  
Tantravahi Venkata Ramana Rao ◽  
Ricardo Alves de Olinda

ABSTRACT This study attempts to provide new information on seasonal and annual trends, on a regional scale, using records of daily air temperature over Idaho, USA, through the analysis of the Growing Season Length (GSL), and maximum and minimum air temperature data from multiple stations in the region, as well as, to obtain the temporal correlation between the daily air temperature and Sea Surface Temperature (SST) indices. The analyses were conducted using long-term and high quality data sets for 35 meteorological stations for the period between 1970 and 2006. The results suggest that both daily maximum and minimum temperatures had increasing trends, but the minimum air temperature is increasing faster than the maximum air temperature. On average, the GSL has increased by 7.5 days/decade during the period 1970-2006, associated with increasing temperatures. Trends in regional air temperature and their indication of climate change are of interest to Idaho and the rest of the world. The trends obtained herein corroborate with the general idea that during the last century the globe has warmed.


2011 ◽  
Vol 8 (1) ◽  
pp. 1411-1444
Author(s):  
W.-J. Zhang ◽  
H.-M. Wang ◽  
F.-T. Yang ◽  
Y.-H. Yi ◽  
X.-F. Wen ◽  
...  

Abstract. The impact of air temperature in early months on the carbon sequestration of a subtropical coniferous plantation was discussed by analyzing the eddy flux observations at Qianyanzhou (QYZ) site located in southern China from 2003 to 2008. This site experienced two cold early growing seasons (with temperature anomalies of 2–5° C) in 2005 and 2008, and also a severe summer drought in 2003. Results indicated that the low air temperature from January to March was the major factor controlling the inter-annual variations in net carbon uptake at this site, rather than the previously thought summer drought. The accumulative air temperature from January to February showed high correlation (R2 = 0.970, p < 0.001) with the annual net ecosystem production (NEP). This was due to the controls of early-months temperature on the plant phenology developing and the growing season length at this subtropical site. The cold spring greatly shortened the growing season length and therefore reduced the carbon uptake period. The eddy flux observations showed a carbon loss of 4.04 g C m−2 per growing-season day at this coniferous forest site. On the other hand, the summer drought also reduced the net carbon uptake strength because the photosynthesis was more sensitive to water deficit stress than the ecosystem respiration. However, the impact of summer drought occurred within a relatively shorter period and the carbon sequestration went back to the normal level once the drought was relieved.


Ecology ◽  
2020 ◽  
Vol 101 (9) ◽  
Author(s):  
Clifton P. Bueno de Mesquita ◽  
Samuel A. Sartwell ◽  
Steven K. Schmidt ◽  
Katharine N. Suding

2014 ◽  
Vol 20 (11) ◽  
pp. 3457-3470 ◽  
Author(s):  
Irene Garonna ◽  
Rogier de Jong ◽  
Allard J.W. de Wit ◽  
Caspar A. Mücher ◽  
Bernhard Schmid ◽  
...  

2019 ◽  
Vol 271 ◽  
pp. 46-53 ◽  
Author(s):  
Ping Ren ◽  
Emanuele Ziaco ◽  
Sergio Rossi ◽  
Franco Biondi ◽  
Peter Prislan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document