Misestimation of Growing Season Length Due to Inaccurate Construction of Satellite Vegetation Index Time Series

2019 ◽  
Vol 16 (8) ◽  
pp. 1185-1189
Author(s):  
Cong Wang ◽  
Kai Zhu
2020 ◽  
Author(s):  
Francisco M. Canero ◽  
Victor Rodriguez-Galiano ◽  
Aaron Cardenas-Martinez ◽  
Juan Antonio Luque-Espinar

<p>Soil pH is one of the most important soil parameters, due to its importance for for soil management and food security. Spatial distribution of pH could altered by the different environmental conditions, such as geology, climate or soil-vegetation interactions. pH has an ecological function in controlling spatial distribution of plant species, conditioning absence or presence of different species due to soil pH ability or modifying mineral solubility. Hence, pH and remotely sensed land surface phenology (LSP) could be associated. The objective of this work was two-folded: i) mapping the soil pH of Andalusian soils and ii) the evaluation of new features derived from remote sensing which are related to seasonal cycles of vegetation applied to digital soil mapping</p><p>We developed a pH model using 3215 pH measurements at different locations together with three types of predictor features: terrain (elevation, slope, hydrological attributes…), climatic (annual and monthly precipitation and maximum and minimum temperatures) and phenological features extracted from remotely sensed vegetation indices time series (date of the start of spring, date of the end of senescence, growing season length, end of the growing season, length of the growing season, maximum peak, and large seasonal integral as a proxy of productivity). The LSP features were obtained from time series of NDVI that were computed from the MODIS weekly surface reflectance product (MOD09Q1 v6) at a spatial resolution of 250 for the entire study period. The performance of  multiple lineal regression (MLR) and Random Forest was evaluated within the framework of a high dimensional feature space.</p><p>The results showed that RF outperformed MLR (R<sup>2</sup>: 0.66 and 0.58; RMSE: 0.76 and 0.83). ph and feature pairwise correlations were higher for the phenological features: median of large integral (-0.55); median of maximum peak (-0.51); valley depth (0.48); median of date of start of spring (-0.47), median of value on the date of start of spring (-0.46). The most important features in RF prediction were almost the same: the median of large integral, valley depth, maximum temperatures in September and median of maximum peak, showing that LSP features were relevant in pH spatial modelling, with an better performance of RF model.</p>


2020 ◽  
Vol 12 (3) ◽  
pp. 968
Author(s):  
Jiang Wei Wang ◽  
Meng Li ◽  
Guang Yu Zhang ◽  
Hao Rui Zhang ◽  
Cheng Qun Yu

Precipitation and growing season length (GSL) are vital abiotic and biotic variables in controlling vegetation productivity in alpine regions. However, their relative effects on vegetation productivity have not been fully understood. In this study, we examined the responses of the maximum normalized difference vegetation index (NDVImax) to growing season precipitation (GSP) and GSL from 2000 to 2013 in 36 alpine grassland sites on the Tibetan Plateau. Our results indicated that NDVImax showed a positive relationship with prolonged GSL (R2 = 0.12) and GSP (R2 = 0.39). The linear slope of NDVImax increased with that of GSP rather than GSL. Therefore, GSP had a stronger effect on NDVImax than did GSL in alpine grasslands on the Tibetan Plateau.


Ecology ◽  
2020 ◽  
Vol 101 (9) ◽  
Author(s):  
Clifton P. Bueno de Mesquita ◽  
Samuel A. Sartwell ◽  
Steven K. Schmidt ◽  
Katharine N. Suding

2015 ◽  
Vol 29 (2) ◽  
pp. 129-135 ◽  
Author(s):  
Alina Danielewska ◽  
Marek Urbaniak ◽  
Janusz Olejnik

Abstract The Scots pine is one of the most important species in European and Asian forests. Due to a widespread occurrence of pine forests, their significance in the energy and mass exchange between the Earth surface and the atmosphere is also important, particularly in the context of climate change and greenhouse gases balance. The aim of this work is to present the relationship between the average annual net ecosystem productivity and growing season length, latitude and air temperature (tay) over Europe. Therefore, CO2 flux measurement data from eight European pine dominated forests were used. The observations suggest that there is a correlation between the intensity of CO2 uptake or emission by a forest stand and the above mentioned parameters. Based on the obtained results, all of the selected pine forest stands were CO2 sinks, except a site in northern Finland. The carbon dioxide uptake increased proportionally with the increase of growing season length (9.212 g C m-2 y-1 per day of growing season, R2 = 0.53, p = 0.0399). This dependency showed stronger correlation and higher statistical significance than both relationships between annual net ecosystem productivity and air temperature (R2 = 0.39, p = 0.096) and annual net ecosystem productivity and latitude (R2 = 0.47, p = 0.058). The CO2 emission surpassed assimilation in winter, early spring and late autumn. Moreover, the appearance of late, cold spring and early winter, reduced annual net ecosystem productivity. Therefore, the growing season length can be considered as one of the main factor affecting the annual carbon budget of pine forests.


2014 ◽  
Vol 20 (11) ◽  
pp. 3457-3470 ◽  
Author(s):  
Irene Garonna ◽  
Rogier de Jong ◽  
Allard J.W. de Wit ◽  
Caspar A. Mücher ◽  
Bernhard Schmid ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document