3,3'-Dimethylnaphthidine Disulphonic Acid

2016 ◽  
Author(s):  
Adam Hulanicki ◽  
Stanisław Głąb
Keyword(s):  
2009 ◽  
Vol 59 (12) ◽  
Author(s):  
Maria Elena Grad ◽  
Valentin Radioi ◽  
Simona Popa ◽  
Dorin Jurcau ◽  
alfa Xenia Lupea

Some chromogenes derivatives of 4,4�-diamino-stilbene-2,2�-disulphonic acid were applied to cotton and wool and colour measurements in the CIELAB system were made. Colour differences were evaluated and some relationships between structure and colour were made. The effect on colour fastness caused by incorporating of different groups in the structure has been also investigated.


1997 ◽  
Vol 323 (3) ◽  
pp. 677-684 ◽  
Author(s):  
Jesús MATEO ◽  
Pedro ROTLLAN ◽  
Eulalia MARTI ◽  
Inmaculada GOMEZ DE ARANDA ◽  
Carles SOLSONA ◽  
...  

The diadenosine polyphosphate hydrolase present in presynaptic plasma membranes from the Torpedo electric organ has been characterized using fluorogenic substrates of the form di-(1,N6-ethenoadenosine) 5´,5‴-P1,Pn-polyphosphate. The enzyme hydrolyses diadenosine polyphosphates (Apn A, where n = 3–5), producing AMP and the corresponding adenosine (n-1) 5´-phosphate, Ap(n-1). The Km values of the enzyme were 0.543± 0.015, 0.478±0.043 and 0.520±0.026 μM, and the Vmax values were 633±4, 592±18 and 576±45 pmol/min per mg of protein, for the etheno derivatives of Ap3A (adenosine 5´,5‴-P1,P3-triphosphate), Ap4A (adenosine 5´,5‴-P1,P4 -tetraphosphate) and Ap5A (adenosine 5´,5‴-P1,P5-pentaphosphate) respectively. Ca2+, Mg2+ and Mn2+ are enzyme activators, with EC50 values of 0.86±0.11, 1.35±0.24 and 0.58±0.10 mM respectively. The fluoride ion is an inhibitor with an IC50 value of 1.38±0.19 mM. The ATP analogues adenosine 5´-tetraphosphate and adenosine 5´-[γ-thio]triphosphate are potent competitive inhibitors and adenosine 5´-[α,β-methylene]diphosphate is a less potent competitive inhibitor, the Ki values being 0.29±0.03, 0.43±0.05 and 7.18±0.8 μM respectively. The P2-receptor antagonist pyridoxal phosphate 6-azophenyl-2´,4´-disulphonic acid behaves as a non-competitive inhibitor with a Ki value of 29.7±3.1 μM, and also exhibits a significant inhibitory effect on Torpedo apyrase activity. The effect of pH on the Km and Vmax values, together with inhibition by diethyl pyrocarbonate, strongly suggests the presence of functional histidine residues in Torpedo diadenosine polyphosphate hydrolase. The enzyme from Torpedo shows similarities with that of neural origin from neurochromaffin cells, and significant differences compared with that from endothelial vascular cells.


2015 ◽  
Vol 309 (4) ◽  
pp. E370-E379 ◽  
Author(s):  
Keeley L. Rose ◽  
Andrew J. Watson ◽  
Thomas A. Drysdale ◽  
Gediminas Cepinskas ◽  
Melissa Chan ◽  
...  

A common complication of type 1 diabetes mellitus is diabetic ketoacidosis (DKA), a state of severe insulin deficiency. A potentially harmful consequence of DKA therapy in children is cerebral edema (DKA-CE); however, the mechanisms of therapy-induced DKA-CE are unknown. Our aims were to identify the DKA treatment factors and membrane mechanisms that might contribute specifically to brain cell swelling. To this end, DKA was induced in juvenile mice with the administration of the pancreatic toxins streptozocin and alloxan. Brain slices were prepared and exposed to DKA-like conditions in vitro. Cell volume changes were imaged in response to simulated DKA therapy. Our experiments showed that cell swelling was elicited with isolated DKA treatment components, including alkalinization, insulin/alkalinization, and rapid reductions in osmolality. Methyl-isobutyl-amiloride, a nonselective inhibitor of sodium-hydrogen exchangers (NHEs), reduced cell swelling in brain slices elicited with simulated DKA therapy (in vitro) and decreased brain water content in juvenile DKA mice administered insulin and rehydration therapy (in vivo). Specific pharmacological inhibition of the NHE1 isoform with cariporide also inhibited cell swelling, but only in the presence of the anion transport (AT) inhibitor 4,4′-diisothiocyanatostilbene-2,2′-disulphonic acid. DKA did not alter brain NHE1 isoform expression, suggesting that the cell swelling attributed to the NHE1 was activity dependent. In conclusion, our data raise the possibility that brain cell swelling can be elicited by DKA treatment factors and that it is mediated by NHEs and/or coactivation of NHE1 and AT.


2005 ◽  
Vol 67 (1) ◽  
pp. 71-75 ◽  
Author(s):  
A SOCHA ◽  
E CHRZESCIJANSKA ◽  
E KUSMIEREK
Keyword(s):  

1992 ◽  
Vol 284 (2) ◽  
pp. 513-520 ◽  
Author(s):  
S J Suchard ◽  
M J Burton ◽  
S J Stoehr

The extracellular matrix (ECM) protein thrombospondin (TSP) binds specifically to polymorphonuclear leucocyte (PMN) surface receptors and promotes cell adhesion and motility. TSP receptor expression increases 30-fold after activation with the synthetic chemotactic peptide, N-formylmethionyl-leucylphenylalanine (FMLP) or the Ca2+ ionophore A23187, in combination with cytochalasin B. The expression of TSP receptors was correlated with the exocytosis of both specific and azurophil granules. Newly expressed TSP receptors are not derived from easily mobilized specific granules since agents that trigger some specific granule release [phorbol myristate acetate (PMA), FMLP or ionophore A23187 alone] do not increase TSP receptor expression. In this study we used the anion-channel blocker, 4,4′-di-isothiocyanatostilbene-2,2′-disulphonic acid (DIDS) to investigate the source of these newly expressed receptors. When PMNs were exposed to cytochalasin B and FMLP or to cytochalasin B and ionophore A23187 in the presence of 30-100 microM-DIDS, TSP receptor expression increased coincidently with vitamin B12-binding protein release from specific granules. Under these same conditions, the release of the azurophil granule component, myeloperoxidase, was significantly inhibited. Using agonists that cause release of specific granules, or both specific granules and azurophil granules, we determined that DIDS blocked the release of PMA-mobilized specific granules and cytochalasin B plus FMLP- or cytochalasin B plus ionophore A23187-mobilized myeloperoxidase-containing azurophil granules but not specific granules mobilized by cytochalasin B plus FMLP or cytochalasin B plus ionophore A23187. These results suggested that PMNs contain at least two subpopulations of specific granules: one that is easily mobilized, lacks TSP receptors and is inhibitable by DIDS, and one that is difficult to mobilize, contains a large pool of TSP receptors and the release of which is enhanced in the presence of DIDS.


1983 ◽  
Vol 210 (3) ◽  
pp. 789-794 ◽  
Author(s):  
A Weber ◽  
E W Westhead ◽  
H Winkler

1. The influence of various substances on the uptake of [3H]ATP and [14C]-noradrenaline into isolated bovine chromaffin granules was investigated. The carrier-mediated [3H]ATP uptake is specifically inhibited by SO42-, PO43- and phosphoenolpyruvate. Compounds with carboxylic acid or sulphonic acid groups had no significant inhibitory effects on either uptake. 2. 35SO42-, 32PO43- and phosphoenol[14C]pyruvate are taken up into chromaffin granules by a temperature-dependent process that is inhibited by atractyloside, uncouplers of oxidative phosphorylation and lipid-permeant anions. The apparent Km of 35SO42- uptake is 0.4 mM. 3. These results indicate that the nucleotide carrier in chromaffin granules has a broad specificity, transporting compounds with two strong negative charges. 4. Amino acid probes influence the uptake of ATP and catecholamines differently. Pyridoxal phosphate inhibits both uptake processes, 4,4′-di-isothiocyanostilbene-2,2′-disulphonic acid preferentially blocks ATP uptake, whereas phenylglyoxal blocks only ATP transport. It is suggested that the nucleotide carrier possesses arginine residues in a functionally important position. 5. The significance of these results obtained on isolated granules for the function of chromaffin granules within the cell is discussed.


1954 ◽  
Vol 32 (6) ◽  
pp. 598-605 ◽  
Author(s):  
Marshall Kulka

Chlorobenzene-2,4-disulphonates (II), -disulphones (IV), and -disulphonamides (V) have been prepared from chlorobenzene-2,4-disulphonyl chloride (I). The properties and reactions of I–V have been compared with those of related derivatives of p-chlorobenzenesulphonic acid and phenoxybenzene-4,4′-disulphonic acid.


Sign in / Sign up

Export Citation Format

Share Document