Deterministic Effect, Deterministic Process

2016 ◽  
Author(s):  
Monica Nordberg ◽  
John H. Duffus ◽  
Douglas M. Templeton
Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 284
Author(s):  
Yu-Hao Liu ◽  
Chien-Chang Chen ◽  
Yi-Jen Hsueh ◽  
Li-Man Hung ◽  
David Hui-Kang Ma ◽  
...  

Although several modes of reprogramming have been reported in different cell types during iPSC induction, the molecular mechanism regarding the selection of different modes of action is still mostly unknown. The present study examined the molecular events that participate in the selection of such processes at the onset of somatic reprogramming. The activity of STAT3 versus that of Erk1/2 reversibly determines the reprogramming mode entered; a lower activity ratio favors the deterministic process and vice versa. Additionally, extraneous E-cadherin facilitates the early events of somatic reprogramming, potentially by stabilizing the LIF/gp130 and EGFR/ErbB2 complexes to promote entry into the deterministic process. Our current findings demonstrated that manipulating the pSTAT3/pErk1/2 activity ratio in the surrounding milieu can drive different modes of action toward either the deterministic or the stochastic process in the context of OSKM-mediated somatic reprogramming.


1997 ◽  
Vol 1 (4) ◽  
pp. 895-904 ◽  
Author(s):  
O. Richter ◽  
B. Diekkrüger

Abstract. The classical models developed for degradation and transport of xenobiotics have been derived with the assumption of homogeneous environments. Unfortunately, deterministic models function well in the laboratory under homogeneous conditions but such homogeneous conditions often do not prevail in the field. A possible solution is the incorporation of the statistical variation of soil parameters into deterministic process models. This demands the development of stochastic models of spatial variability. To this end, spatial soil parameter fields are conceived as the realisation of a random spatial process. Extrapolation of local fine scale models to large heterogeneous fields is achieved by coupling deterministic process models with random spatial field models.


1984 ◽  
Vol 21 (03) ◽  
pp. 464-478
Author(s):  
William J. Anderson

The response of the photographic grain to light is a non-deterministic process which is as yet not completely understood. This response, as measured by the photographic density, is usually taken to be a function of the product of incident light intensity and exposure time interval duration, but at extreme values of either of these two quantities, this is no longer true. This latter effect is called reciprocity-law failure. This paper discusses a probabilistic model, similar to a multiserver queue, for high-intensity reciprocity failure.


mSystems ◽  
2019 ◽  
Vol 4 (5) ◽  
Author(s):  
Cui-Jing Zhang ◽  
Jie Pan ◽  
Chang-Hai Duan ◽  
Yong-Ming Wang ◽  
Yang Liu ◽  
...  

ABSTRACT Mangroves, as a blue carbon reservoir, provide an environment for a variety of microorganisms. Mangroves lie in special locations connecting coastal and estuarine areas and experience fluctuating conditions, which are expected to intensify with climate change, creating a need to better understand the relative roles of stochastic and deterministic processes in shaping microbial community assembly. Here, a study of microbial communities inhabiting mangrove sediments across southeastern China, spanning mangroves in six nature reserves, was conducted. We performed high-throughput DNA sequencing of these samples and compared them with data of 1,370 sediment samples collected from the Earth Microbiome Project (EMP) to compare the microbial diversity of mangroves with that of other biomes. Our results showed that prokaryotic alpha diversity in mangroves was significantly higher than that in other biomes and that microbial beta diversity generally clustered according to biome types. The core operational taxonomic units (OTUs) in mangroves were mostly assigned to Gammaproteobacteria, Deltaproteobacteria, Chloroflexi, and Euryarchaeota. The majority of beta nearest-taxon index values were higher than 2, indicating that community assembly in mangroves was better explained through a deterministic process than through a stochastic process. Mean annual precipitation (MAP) and total organic carbon (TOC) were main deterministic factors explaining variation in the microbial community. This study fills a gap in addressing the unique microbial diversity of mangrove ecosystems and their microbial community assembly mechanisms. IMPORTANCE Understanding the underlying mechanisms of microbial community assembly patterns is a vital issue in microbial ecology. Mangroves, as an important and special ecosystem, provide a unique environment for examining the relative importance of stochastic and deterministic processes. We made the first global-scale comparison and found that microbial diversity was significantly different in mangrove sediments compared to that of other biomes. Furthermore, our results suggest that a deterministic process is more important in shaping microbial community assembly in mangroves.


Complexity ◽  
2014 ◽  
Vol 20 (5) ◽  
pp. 43-49 ◽  
Author(s):  
Long Guo ◽  
Yongjin Cheng ◽  
Zhongjie Luo

Sign in / Sign up

Export Citation Format

Share Document