scholarly journals Analytic approximation of Volterra’s population model

2017 ◽  
Vol 13 (1) ◽  
pp. 5-17 ◽  
Author(s):  
J. Biazar ◽  
K. Hosseini

Abstract In this paper, the Volterra’s population model is studied for population growth of a species within a closed system. Modified Adomian decomposition method (MADM) in conjunction with Pade technique is formally proposed to obtain an analytic approximation for the solution of the model, which is a nonlinear intgro-differential equation. The results of the method are compared with the existing exact results, confirming the accuracy and the efficiency of the proposed approach.

2009 ◽  
Vol 9 (4) ◽  
pp. 321-331 ◽  
Author(s):  
M. A. Fariborzi Araghi ◽  
Sh. Sadigh Behzadi

AbstractIn this paper, a nonlinear Volterra | Fredholm integro-differential equation is solved by using the modified Adomian decomposition method (MADM). The approximate solution of this equation is calculated in the form of a series in which its components are computed easily. The accuracy of the proposed numerical scheme is examined by comparison with other analytical and numerical results. The existence, uniqueness and convergence and an error bound of the proposed method are proved. Some examples are presented to illustrate the efficiency and the performance of the modified decomposition method.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
S. Narayanamoorthy ◽  
T. L. Yookesh

We propose an algorithm of the approximate method to solve linear fuzzy delay differential equations using Adomian decomposition method. The detailed algorithm of the approach is provided. The approximate solution is compared with the exact solution to confirm the validity and efficiency of the method to handle linear fuzzy delay differential equation. To show this proper features of this proposed method, numerical example is illustrated.


2020 ◽  
Vol 4 (1) ◽  
pp. 448-455
Author(s):  
Mulugeta Andualem ◽  
◽  
Atinafu Asfaw ◽  

Nonlinear initial value problems are somewhat difficult to solve analytically as well as numerically related to linear initial value problems as their variety of natures. Because of this, so many scientists still searching for new methods to solve such nonlinear initial value problems. However there are many methods to solve it. In this article we have discussed about the approximate solution of nonlinear first order ordinary differential equation using ZZ decomposition method. This method is a combination of the natural transform method and Adomian decomposition method.


2017 ◽  
Vol 40 (6) ◽  
pp. 2054-2061 ◽  
Author(s):  
Ali Alizadeh ◽  
Sohrab Effati

In this study, we use the modified Adomian decomposition method to solve a class of fractional optimal control problems. The performance index of a fractional optimal control problem is considered as a function of both the state and the control variables, and the dynamical system is expressed in terms of a Caputo type fractional derivative. Some properties of fractional derivatives and integrals are used to obtain Euler–Lagrange equations for a linear tracking fractional control problem and then, the modified Adomian decomposition method is used to solve the resulting fractional differential equations. This technique rapidly provides convergent successive approximations of the exact solution to a linear tracking fractional optimal control problem. We compare the proposed technique with some numerical methods to demonstrate the accuracy and efficiency of the modified Adomian decomposition method by examining several illustrative test problems.


Sign in / Sign up

Export Citation Format

Share Document