Isotonic saline causes greater volume overload than electrolyte-free irrigating fluids

Author(s):  
Robert G. Hahn

Abstract Objectives Systemic absorption of the irrigating fluid used to flush the operating site is a potentially serious complication in several types of endoscopic operations. To increase safety, many surgeons have changed from a monopolar to a bipolar resection technique because 0.9% saline can then be used instead of electrolyte-free fluid for irrigation. The present study examines whether the tendency for excessive plasma volume expansion is greater with saline than with electrolyte-free fluid. Methods Pooled data were analyzed from four studies in which a mean of 1.25 L of either 0.9% saline or an electrolyte-free irrigating fluid containing glycine, mannitol, and sorbitol was given by intravenous infusion on 80 occasions to male volunteers and patients scheduled for transurethral prostatic surgery. The distribution of the infused fluid was analyzed with a population volume kinetic model based on frequently measured hemodilution and the urinary excretion. Results Electrolyte-free fluid distributed almost twice as fast and was excreted four times faster than 0.9% saline. The distribution half-life was 6.5 and 10.6 min for the electrolyte-free fluid and saline, respectively, and the elimination half-lives (by urinary excretion) from the plasma volume were 21 and 87 min. Simulation showed that the plasma volume expansion was twice as great from 0.9% saline than from electrolyte-free fluid. Conclusions Isotonic (0.9%) saline expands the plasma volume by twice as much as occurs with electrolyte-free irrigating fluids. This difference might explain why signs of cardiovascular overload are the most commonly observed adverse effects when saline is absorbed during endoscopic surgery.

1971 ◽  
Vol 40 (1) ◽  
pp. 73-79 ◽  
Author(s):  
J. A. Reyburn ◽  
J. P. Gilmore

1. The natriuretic response of normally hydrated unanaesthetized dogs to preferential plasma volume expansion was studied, comparing the response to infusion of hyperoncotic dextran in isotonic saline with that to infusion of an identical volume of isotonic saline. 2. Significant increases in urine flow, sodium excretion, sodium filtration and potassium excretion were observed with each type of infusion. 3. The changes with each type of infusion were not significantly different however, even though plasma volume increased significantly following dextran saline infusion. 4. The natriuretic response of normal dogs to preferential plasma volume expansion appears to be commensurate with the saline load infused rather than the induced plasma volume increase.


Hypertension ◽  
1995 ◽  
Vol 26 (6) ◽  
pp. 1019-1023 ◽  
Author(s):  
Sofía P. Salas ◽  
Fernando Altermatt ◽  
Mauricio Campos ◽  
Andrea Giacaman ◽  
Pedro Rosso

2013 ◽  
Vol 305 (10) ◽  
pp. F1491-F1497 ◽  
Author(s):  
Li Zhou ◽  
Gang Liu ◽  
Zhanjun Jia ◽  
Kevin T. Yang ◽  
Ying Sun ◽  
...  

Thiazolidinediones (TZDs), which are synthetic peroxisome proliferator-activated receptor subtype-γ (PPARγ), agonists are highly effective for treatment of type 2 diabetes. However, the side effect of fluid retention has significantly limited their application. Most of the previous studies addressing TZD-induced fluid retention employed healthy animals. The underlying mechanism of this phenomenon is still incompletely understood, particularly in the setting of disease state. The present study was undertaken to examine rosiglitazone (RGZ)-induced fluid retention in db/db mice and to further investigate the underlying mechanism. In response to RGZ treatment, db/db mice exhibited an accelerated plasma volume expansion as assessed by hematocrit (Hct) and fluorescent nanoparticles, in parallel with a greater increase in body weight, compared with lean controls. In response to RGZ-induced fluid retention, urinary Na+ excretion and urine volume were significantly increased in lean mice. In contrast, the natriuretic and diuretic responses were significantly blunted in db/db mice. RGZ db/db mice exhibited a parallel decrease in plasma Na+ concentration and plasma osmolality, contrasting to unchanged levels in lean controls. Imunoblotting analysis showed downregulation of renal aquaporin (AQP) 2 expression in response to RGZ treatment in lean mice but not in db/db mice. Renal AQP3 protein expression was unaffected by RGZ treatment in lean mice but was elevated in db/db mice. In contrast, the expression of Na+/H+ exchanger-3 (NHE3) and NKCC2 was unchanged in either mouse strain. Together these results suggest that compared with the lean controls, db/db mice exhibited accelerated plasma volume expansion that was in part due to the inappropriate response of renal water transporters.


1988 ◽  
Vol 64 (1) ◽  
pp. 404-408 ◽  
Author(s):  
M. K. Hopper ◽  
A. R. Coggan ◽  
E. F. Coyle

The effects of plasma-volume (PV) expansion on stroke volume (SV) (CO2 rebreathing) during submaximal exercise were determined. Intravenous infusion of 403 +/- 21 ml of a 6% dextran solution before exercise in the upright position increased SV 11% (i.e., 130 +/- 6 to 144 +/- 5 ml; P less than 0.05) in untrained males (n = 7). Further PV expansion (i.e., 706 +/- 43 ml) did not result in a further increase in SV (i.e., 145 +/- 4 ml). SV was somewhat higher during supine compared with upright exercise when blood volume (BV) was normal (i.e., 138 +/- 8 vs. 130 +/- 6 ml; P = 0.08). PV expansion also increased SV during exercise in the supine position (i.e., 138 +/- 8 to 150 +/- 8 ml; P less than 0.05). In contrast to these observations in untrained men, PV expansion of endurance-trained men (n = 10), who were naturally PV expanded, did not increase SV during exercise in the upright or supine positions. When BV in the untrained men was increased to match that of the endurance-trained subjects, SV was observed to be 15% higher (165 +/- 7 vs. 144 +/- 5 ml; P less than 0.05), whereas mean blood pressure and total peripheral resistance were significantly lower (P less than 0.05) in the trained compared with untrained subjects during upright exercise at a similar heart rate. The present findings indicate that exercise SV in untrained men is preload dependent and that increases in exercise SV occur in response to the first 400 ml of PV expansion. It appears that approximately one-half of the difference in SV normally observed between untrained and highly endurance-trained men during upright exercise is due to a suboptimal BV in the untrained men.


Sign in / Sign up

Export Citation Format

Share Document