low protein diet
Recently Published Documents


TOTAL DOCUMENTS

1174
(FIVE YEARS 149)

H-INDEX

57
(FIVE YEARS 7)

2022 ◽  
Vol 43 (1) ◽  
pp. 159-178
Author(s):  
Shahram Shirmohammadi ◽  
◽  
Akbar Taghizadeh ◽  
Ali Hosseinkhani ◽  
Hossein Janmohammadi ◽  
...  

Ruminants are one of the largest anthropogenic methane and nitrous oxide emissions. Therefore, the hypothesis was to study the effects of reducing dietary crude protein (CP) level on environmental contaminators when rumen-protected amino acids and choline chloride were supplemented. Sixty Holstein dairy cows were used during the experiment. Test diets were: (1) CD = Control diet with16.2 g of crude protein/ Kg of DM); (2) LM = Low protein diet with 14.2 g of crude protein/ Kg of DM + methionine ; (3) LL = Low protein diet with 14.2 g of crude protein/ Kg of DM + lysine; (4) LML = Low protein diet with 14.2 g of crude protein/ Kg of DM + methionine + lysine; (5) LMLC = Low protein diet with 14.2 g of crude protein/ Kg of DM + methionine + lysine + choline. Dry matter and NDF intake were not different, but the control group received higher CP and ADF compared with other groups (P < 0.05). Fecal CP and ADF of control group were lower (P < 0.05), but no differences were observed for fecal dry matter (DM) and NDF. Milk yield and protein content were higher for LML and LMLC like control group (P < 0.05). Nitrogen intake, urinary N, urinary urea N and total excreta N decreased (P < 0.05) when animals fed low protein. There was no difference in ruminal pH and acetate to propionate ratio, whereas the ruminal ammonia-N decreased with the low protein (P < 0.05). The 120-h gas production test, showed no difference on the kinetics of digestion and in vitro methane emission. However, the inclusion of DMI in the calculations revealed that low protein can reduce (P < 0.05) methane emission. Overall, our findings indicated that low protein can be compensated for by adding rumen-protected amino acids, not only to maintain the animal performance, but also to decrease nitrogen excretion and methane emission.


Genes ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 75
Author(s):  
Kaoru Takahashi ◽  
Huijuan Jia ◽  
Shoko Takahashi ◽  
Hisanori Kato

Adequate protein nutrition is essential for good health. Effects of protein malnutrition in animals have been widely studied at the mRNA level with the development of DNA microarray technology. Although microRNAs (miRNAs) have attracted attention for their function in regulating gene expression and have been studied in several disciplines, fewer studies have clarified the effects of protein malnutrition on miRNA alterations. The present study aimed to elucidate the relationship between protein malnutrition and miRNAs. Six-week old Wistar male rats were fed a control diet (20% casein) or a low-protein diet (5% casein) for two weeks, and their livers were subjected to both DNA microarray and miRNA array analysis. miR-203 was downregulated and its putative target Hadhb (hydroxyacyl-CoA dehydrogenase β subunit), known to regulate β-oxidation of fatty acids, was upregulated by the low-protein diet. In an in vitro experiment, miR-203 or its inhibitor were transfected in HepG2 cells, and the pattern of Hadhb expression was opposite to that of miR-203 expression. In addition, to clarifying the hepatic miRNA profile in response to protein malnutrition, these results showed that a low-protein diet increased Hadhb expression through downregulation of miR-203 and induced β-oxidation of fatty acids.


animal ◽  
2021 ◽  
Vol 15 (12) ◽  
pp. 100408
Author(s):  
M. Muñoz ◽  
M.A. Fernández-Barroso ◽  
A. López-García ◽  
C. Caraballo ◽  
Y. Nuñez ◽  
...  

Agriculture ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1155
Author(s):  
Kefyalew Gebeyew ◽  
Wenxun Chen ◽  
Qiongxian Yan ◽  
Zhixiong He ◽  
Zhiliang Tan

A dependence between dietary protein and starch levels flowing to the duodenum has been characterized in monogastric animals for optimal enzymatic secretions of the pancreas, but those in ruminants remain unclarified. The present experiment was conveyed to assess the pancreas growth and mRNA expression of the small intestine enzymes in growing goats fed a low-protein diet. Twenty-four Liuyang goats (19.55 ± 3.55 of body weight (BW)) and aged approximately 8 months were randomly assigned to either a control protein diet (NP: 10.77% CP) or a low-protein diet (LP: 5.52% CP) for 70 days. The results show that no statistical differences (p > 0.05) were observed in the pancreas growth indices between the groups. Pancreas and small intestine α-amylase and lipase activities were unaffected (p > 0.05) by the LP diet, while activities of trypsin and chymotrypsin were decreased (p < 0.05). The LP diet reduced (p < 0.05) the mRNA expressions of trypsin and chymotrypsin in the duodenum and jejunum, and had no effects (p > 0.05) on the mRNA expressions of α-amylase and lipase. Goats fed with the LP diet had higher (p < 0.05) concentrations of cholecystokinin and insulin than those fed with the NP diet. In conclusion, feeding an LP diet (5.52% CP) had no profound influence on pancreas growth and digestive enzyme synthesis in goats.


2021 ◽  
Vol 8 ◽  
Author(s):  
Miaolin Ma ◽  
Shunju Geng ◽  
Meiling Liu ◽  
Lihong Zhao ◽  
Jianyun Zhang ◽  
...  

This study investigated the effects of different levels of methionine (Met) in a low protein diet on the production performance, reproductive system, metabolism, and gut microbial composition of laying hens to reveal the underlying molecular mechanism of Met in a low protein diet on the host metabolism and gut microbial composition and function of hens. A total of 360 healthy 38-week-old Peking Pink laying hens with similar body conditions and egg production (EP) were randomly divided into four groups with nine replicates per treatment and 10 hens per replicate. The hens in each treatment group were fed low protein diets containing different levels of Met (0.25, 0.31, 0.38, and 0.47%, respectively) for 12 weeks. Feed and water were provided ad libitum throughout the trial period. The results showed that, compared with the 0.25% Met group, the final body weight (FBW), average daily gain (ADG), EP, egg weight (EW), and average daily feed intake (ADFI) in the other groups were significantly increased and feed egg ratio (FER) was decreased. Meanwhile, the EW and yield of abdominal fat (AFY) in the 0.47% Met group were higher than those in other groups. The triglyceride (TG), estradiol (E2), total protein (TP), albumin (ALB), and immunoglobulin A (IgA) in the 0.38 and 0.47% Met groups were higher than those in other groups. In addition, 16S rRNA gene sequencing revealed that there was no difference in the Sobs index, ACE index, and Shannon index among all groups. However, it is worth noting that feeding low protein diets with Met changed the gut microbial composition (e.g., the supplementation of Met increased the level of Lactobacillus and decreased the proportion of Faecalibacterium). Also, our results showed that the changes in gut microbial composition induced by the diets with different levels of Met were closely related to the changes of key parameters: ADFI, EW, FBW, TG, EM, EP, ADG, FER, and uric acid (UA). Our results highlight the role of adding an appropriate amount of Met to the low protein diet in laying hens, which could improve the gut microbial composition, production performance, reproductive system, and nutrient metabolism of laying hens. In conclusion, this study suggested that when the Met level was 0.38%, the production performance of the laying hens was pretty good.


2021 ◽  
pp. 039139882110498
Author(s):  
Kullaya Takkavatakarn ◽  
Piyawan Kittiskulnam ◽  
Khajohn Tiranathanagul ◽  
Pisut Katavetin ◽  
Niramon Wongyai ◽  
...  

Incremental hemodialysis (HD) has become an exciting approach according to the recognition of the importance of preserving residual kidney function (RKF). However, not all incident HD patients are suitable for this approach, particularly once-weekly HD. This is the first study which reported the effectiveness of once-weekly online-hemodiafiltration (OL-HDF) plus low protein diet (LPD) in incident HD patients. All stage 5 CKD patients who had chosen HD as their treatment modality at the HD center of King Chulalongkorn Memorial Hospital, Bangkok, Thailand, with RKF ⩾ 3 mL/min calculated by renal clearance of urea and urine output ⩾ 800 mL/day, started the treatment with once-weekly OL-HDF. Dietitians advised patients to consume LPD (0.6–0.8 g/kg/day) on non-dialysis days and a regular protein diet on the dialysis day (1.2 g/kg/day). Eleven incident HD patients were enrolled in the study. The mean RKF and urine volume at baseline were 4.56 ± 2.21 mL/min and 2,019.54 ± 743.73 mL/day, respectively. After 6 and 12 months of follow-up, the mean RKF of the patients who remained in the once-weekly OL-HDF protocol were 3.82 ± 1.68 mL/min and 3.28 ± 0.95 mL/min, respectively. The median duration of once-weekly OL-HDF before transitioning to twice- or thrice-weekly OL-HDF was 7 months (3–24 months). The most common indication for stepping prescription was too low RKF. We reported that dialysis initiation in the university-based center with once-weekly OL-HDF in carefully selected incident HD patients combined with LPD under serial monitoring is practical. Further studies on the clinical benefits of once-weekly OL-HDF are still required.


2021 ◽  
pp. 1-29
Author(s):  
Mingzhu Cai ◽  
Jie Zhang ◽  
Hong Chen ◽  
Yuan-Xiang Pan

Abstract This study investigates the mechanism by which maternal protein restriction induces hepatic autophagy-related gene expression in the offspring of rats. Pregnant Sprague-Dawley rats were fed either a control diet (C, 18% energy from protein) or a low-protein diet (LP, 8.5% energy from protein) during gestation, followed by the control diet during lactation and post-weaning. Liver tissue was collected from the offspring at postnatal day 38 and divided into four groups according to sex and maternal diet (F-C, F-LP, M-C, and M-LP) for further analysis. Autophagy-related mRNA and protein levels were determined by real-time PCR and Western blotting, respectively. In addition, chromatin immunoprecipitation (ChIP) was performed to investigate the interactions between transcription factors and autophagy-related genes. Protein levels of p-eIF2a and ATF4 were increased only in the female offspring born to dams fed the LP diet. Correlatively, the mRNA expression of hepatic autophagy-related genes including Map1lc3b, P62/Sqstm1, Becn1, Atg3, Atg7, and Atg10 was significantly greater in the F-LP group than in the F-C group. Furthermore, ChIP results showed greater ATF4 and C/EBP homology protein (CHOP) binding at the regions of a set of autophagy-related genes in the F-LP group than in the F-C group. Our data demonstrated that a maternal LP diet transcriptionally programmed hepatic autophagy-related gene expression only in female rat offspring. This transcriptional program involved the activation of the eIF2α/ATF4 pathway and intricate regulation by transcription factors ATF4 and CHOP.


Sign in / Sign up

Export Citation Format

Share Document