A Class of Unbiased Estimators of the Average Treatment Effect in Randomized Experiments

2013 ◽  
Vol 1 (1) ◽  
pp. 135-154 ◽  
Author(s):  
Peter M. Aronow ◽  
Joel A. Middleton

AbstractWe derive a class of design-based estimators for the average treatment effect that are unbiased whenever the treatment assignment process is known. We generalize these estimators to include unbiased covariate adjustment using any model for outcomes that the analyst chooses. We then provide expressions and conservative estimators for the variance of the proposed estimators.

2018 ◽  
Vol 238 (3-4) ◽  
pp. 243-293 ◽  
Author(s):  
Jason Ansel ◽  
Han Hong ◽  
and Jessie Li

Abstract We investigate estimation and inference of the (local) average treatment effect parameter when a binary instrumental variable is generated by a randomized or conditionally randomized experiment. Under i.i.d. sampling, we show that adding covariates and their interactions with the instrument will weakly improve estimation precision of the (local) average treatment effect, but the robust OLS (2SLS) standard errors will no longer be valid. We provide an analytic correction that is easy to implement and demonstrate through Monte Carlo simulations and an empirical application the interacted estimator’s efficiency gains over the unadjusted estimator and the uninteracted covariate adjusted estimator. We also generalize our results to covariate adaptive randomization where the treatment assignment is not i.i.d., thus extending the recent contributions of Bugni, F., I.A. Canay, A.M. Shaikh (2017a), Inference Under Covariate-Adaptive Randomization. Working Paper and Bugni, F., I.A. Canay, A.M. Shaikh (2017b), Inference Under Covariate-Adaptive Randomization with Multiple Treatments. Working Paper to allow for the case of non-compliance.


2015 ◽  
Vol 6 (1-2) ◽  
Author(s):  
Joel A. Middleton ◽  
Peter M. Aronow

AbstractMany estimators of the average treatment effect, including the difference-in-means, may be biased when clusters of units are allocated to treatment. This bias remains even when the number of units within each cluster grows asymptotically large. In this paper, we propose simple, unbiased, location-invariant, and covariate-adjusted estimators of the average treatment effect in experiments with random allocation of clusters, along with associated variance estimators. We then analyze a cluster-randomized field experiment on voter mobilization in the US, demonstrating that the proposed estimators have precision that is comparable, if not superior, to that of existing, biased estimators of the average treatment effect.


2016 ◽  
Vol 113 (45) ◽  
pp. 12673-12678 ◽  
Author(s):  
Stefan Wager ◽  
Wenfei Du ◽  
Jonathan Taylor ◽  
Robert J. Tibshirani

We study the problem of treatment effect estimation in randomized experiments with high-dimensional covariate information and show that essentially any risk-consistent regression adjustment can be used to obtain efficient estimates of the average treatment effect. Our results considerably extend the range of settings where high-dimensional regression adjustments are guaranteed to provide valid inference about the population average treatment effect. We then propose cross-estimation, a simple method for obtaining finite-sample–unbiased treatment effect estimates that leverages high-dimensional regression adjustments. Our method can be used when the regression model is estimated using the lasso, the elastic net, subset selection, etc. Finally, we extend our analysis to allow for adaptive specification search via cross-validation and flexible nonparametric regression adjustments with machine-learning methods such as random forests or neural networks.


2021 ◽  
Author(s):  
Youmi Suk ◽  
Peter Steiner ◽  
Jee-Seon Kim ◽  
Hyunseung Kang

Regression discontinuity designs are commonly used for program evaluation with continuous treatment assignment variables. But in practice, treatment assignment is frequently based on discrete or ordinal variables. In this study, we propose a regression discontinuity design with an ordinal running variable to assess the effects of extended time accommodations (ETA) for English language learners (ELL). ETA eligibility is determined by ordinal ELL English proficiency categories of National Assessment of Educational Progress data. We discuss the identification and estimation of the average treatment effect, intent-to-treat effect, and the local average treatment effect at the cutoff. We also propose a series of sensitivity analyses to probe the effect estimates' robustness to the choices of scaling functions and cutoff scores, and unmeasured confounding.


Biometrika ◽  
2020 ◽  
Vol 107 (4) ◽  
pp. 935-948
Author(s):  
Hanzhong Liu ◽  
Yuehan Yang

Summary Linear regression is often used in the analysis of randomized experiments to improve treatment effect estimation by adjusting for imbalances of covariates in the treatment and control groups. This article proposes a randomization-based inference framework for regression adjustment in stratified randomized experiments. We re-establish, under mild conditions, the finite-population central limit theorem for a stratified experiment, and we prove that both the stratified difference-in-means estimator and the regression-adjusted average treatment effect estimator are consistent and asymptotically normal; the asymptotic variance of the latter is no greater and typically less than that of the former. We also provide conservative variance estimators that can be used to construct large-sample confidence intervals for the average treatment effect.


Author(s):  
David M. Drukker

I illustrate that the simple regression-adjustment estimator is inconsistent for the average treatment effect when the random effects affecting treatment assignment are correlated with the random effects that affect the potential outcomes. I present a simple parametric estimator that is consistent in this case.


Sign in / Sign up

Export Citation Format

Share Document