scholarly journals Groups whose non-permutable subgroups are metaquasihamiltonian

2020 ◽  
Vol 23 (3) ◽  
pp. 513-529
Author(s):  
Maria Ferrara ◽  
Marco Trombetti

AbstractIf {\mathfrak{X}} is a class of groups, define a sequence of group classes {\mathfrak{X}_{1},\mathfrak{X}_{2},\ldots,\mathfrak{X}_{k},\ldots} by putting {\mathfrak{X}_{1}=\mathfrak{X}} and choosing {\mathfrak{X}_{k+1}} as the class of all groups whose non-permutable subgroups belong to {\mathfrak{X}_{k}}. In particular, if {\mathfrak{A}} is the class of abelian groups, {\mathfrak{A}_{2}} is the class of quasimetahamiltonian groups, i.e. groups whose non-permutable subgroups are abelian. The aim of this paper is to study the structure of {\mathfrak{X}_{k}}-groups, with special emphasis on the case {\mathfrak{X}=\mathfrak{A}}. Among other results, it will also be proved that a group has a finite normal subgroup with quasihamiltonian quotient if and only if it is locally graded and belongs to {\mathfrak{A}_{k}} for some positive integer k.

1981 ◽  
Vol 33 (4) ◽  
pp. 817-825 ◽  
Author(s):  
Paul Hill

All groups herein are assumed to be abelian. It was not until the 1940's that it was known that a subgroup of an infinite direct sum of finite cyclic groups is again a direct sum of cyclics. This result rests on a general criterion due to Kulikov [7] for a primary abelian group to be a direct sum of cyclic groups. If G is p-primary, Kulikov's criterion presupposes that G has no elements (other than zero) having infinite p-height. For such a group G, the criterion is simply that G be the union of an ascending sequence of subgroups Hn where the heights of the elements of Hn computed in G are bounded by some positive integer λ(n). The theory of abelian groups has now developed to the point that totally projective groups currently play much the same role, at least in the theory of torsion groups, that direct sums of cyclic groups and countable groups played in combination prior to the discovery of totally projective groups and their structure beginning with a paper by R. Nunke [11] in 1967.


1969 ◽  
Vol 12 (2) ◽  
pp. 225-227 ◽  
Author(s):  
Charles K. Megibben

In [1] Cutler proved the following theorem.Theorem. If G and K are abelian groups such that nG ≅ nK for some positive integer n, then there are abelian groups U and V such that U ⊕ G ≅ V ⊕ K and nU = 0 = nV.Cutler's proof is long and fairly involved. Walker [3] obtains the theorem rather elegantly as a corollary of his results on n-extensions. We give here a proof that is extremely simple both in conception and execution. Our proof relies on the notion of p-basic subgroups introduced by Fuchs in [2]. Therefore we shall first recall certain pertinent facts from [2].


2011 ◽  
Vol 12 (01n02) ◽  
pp. 125-135 ◽  
Author(s):  
ABBY GAIL MASK ◽  
JONI SCHNEIDER ◽  
XINGDE JIA

Cayley digraphs of finite abelian groups are often used to model communication networks. Because of their applications, extremal Cayley digraphs have been studied extensively in recent years. Given any positive integers d and k. Let m*(d, k) denote the largest positive integer m such that there exists an m-element finite abelian group Γ and a k-element subset A of Γ such that diam ( Cay (Γ, A)) ≤ d, where diam ( Cay (Γ, A)) denotes the diameter of the Cayley digraph Cay (Γ, A) of Γ generated by A. Similarly, let m(d, k) denote the largest positive integer m such that there exists a k-element set A of integers with diam (ℤm, A)) ≤ d. In this paper, we prove, among other results, that [Formula: see text] for all d ≥ 1 and k ≥ 1. This means that the finite abelian group whose Cayley digraph is optimal with respect to its diameter and degree can be a cyclic group.


2019 ◽  
Vol 102 (1) ◽  
pp. 96-103
Author(s):  
DARIO ESPOSITO ◽  
FRANCESCO DE GIOVANNI ◽  
MARCO TROMBETTI

If $\mathfrak{X}$ is a class of groups, we define a sequence $\mathfrak{X}_{1},\mathfrak{X}_{2},\ldots ,\mathfrak{X}_{k},\ldots$ of group classes by putting $\mathfrak{X}_{1}=\mathfrak{X}$ and choosing $\mathfrak{X}_{k+1}$ as the class of all groups whose nonnormal subgroups belong to $\mathfrak{X}_{k}$. In particular, if $\mathfrak{A}$ is the class of abelian groups, $\mathfrak{A}_{2}$ is the class of metahamiltonian groups, that is, groups whose nonnormal subgroups are abelian. The aim of this paper is to study the structure of $\mathfrak{X}_{k}$-groups, with special emphasis on the case $\mathfrak{X}=\mathfrak{A}$. Among other results, it will be proved that a group has a finite commutator subgroup if and only if it is locally graded and belongs to $\mathfrak{A}_{k}$ for some positive integer $k$.


2019 ◽  
Vol 69 (4) ◽  
pp. 763-772
Author(s):  
Chenchen Cao ◽  
Venus Amjid ◽  
Chi Zhang

Abstract Let σ = {σi ∣i ∈ I} be some partition of the set of all primes ℙ, G be a finite group and σ(G) = {σi∣σi ∩ π(G) ≠ ∅}. G is said to be σ-primary if ∣σ(G)∣ ≤ 1. A subgroup H of G is said to be σ-subnormal in G if there exists a subgroup chain H = H0 ≤ H1 ≤ … ≤ Ht = G such that either Hi−1 is normal in Hi or Hi/(Hi−1)Hi is σ-primary for all i = 1, …, t. A set 𝓗 of subgroups of G is said to be a complete Hall σ-set of G if every non-identity member of 𝓗 is a Hall σi-subgroup of G for some i and 𝓗 contains exactly one Hall σi-subgroup of G for every σi ∈ σ(G). Let 𝓗 be a complete Hall σ-set of G. A subgroup H of G is said to be 𝓗-permutable if HA = AH for all A ∈ 𝓗. We say that a subgroup H of G is weakly 𝓗-permutable in G if there exists a σ-subnormal subgroup T of G such that G = HT and H ∩ T ≤ H𝓗, where H𝓗 is the subgroup of H generated by all those subgroups of H which are 𝓗-permutable. By using the weakly 𝓗-permutable subgroups, we establish some new criteria for a group G to be σ-soluble and supersoluble, and we also give the conditions under which a normal subgroup of G is hypercyclically embedded.


2016 ◽  
Vol 26 (05) ◽  
pp. 973-983 ◽  
Author(s):  
E. I. Khukhro ◽  
P. Shumyatsky

Let [Formula: see text] be an element of a group [Formula: see text]. For a positive integer [Formula: see text], let [Formula: see text] be the subgroup generated by all commutators [Formula: see text] over [Formula: see text], where [Formula: see text] is repeated [Formula: see text] times. We prove that if [Formula: see text] is a profinite group such that for every [Formula: see text] there is [Formula: see text] such that [Formula: see text] is finite, then [Formula: see text] has a finite normal subgroup [Formula: see text] such that [Formula: see text] is locally nilpotent. The proof uses the Wilson–Zelmanov theorem saying that Engel profinite groups are locally nilpotent. In the case of a finite group [Formula: see text], we prove that if, for some [Formula: see text], [Formula: see text] for all [Formula: see text], then the order of the nilpotent residual [Formula: see text] is bounded in terms of [Formula: see text].


Author(s):  
Viktoria S. Zakrevskaya

Let σ = {σi|i ∈ I } be a partition of the set of all primes ℙ and G be a finite group. A set ℋ  of subgroups of G is said to be a complete Hall σ-set of G if every member ≠1 of ℋ  is a Hall σi-subgroup of G for some i ∈ I and ℋ contains exactly one Hall σi-subgroup of G for every i such that σi ⌒ π(G)  ≠ ∅.  A group is said to be σ-primary if it is a finite σi-group for some i. A subgroup A of G is said to be: σ-permutable in G if G possesses a complete Hall σ-set ℋ  such that AH x = H  xA for all H ∈ ℋ  and all x ∈ G; σ-subnormal in G if there is a subgroup chain A = A0 ≤ A1 ≤ … ≤ At = G such that either Ai − 1 ⊴ Ai or Ai /(Ai − 1)Ai is σ-primary for all i = 1, …, t; 𝔄-normal in G if every chief factor of G between AG and AG is cyclic. We say that a subgroup H of G is: (i) partially σ-permutable in G if there are a 𝔄-normal subgroup A and a σ-permutable subgroup B of G such that H = < A, B >; (ii) (𝔄, σ)-embedded in G if there are a partially σ-permutable subgroup S and a σ-subnormal subgroup T of G such that G = HT and H ∩ T ≤ S ≤ H. We study G assuming that some subgroups of G are partially σ-permutable or (𝔄, σ)-embedded in G. Some known results are generalised.


Author(s):  
Fausto De Mari

A subgroup [Formula: see text] of a group [Formula: see text] is said to be permutable if [Formula: see text] for every subgroup [Formula: see text] of [Formula: see text] and the group [Formula: see text] is called metaquasihamiltonian if all subgroups of [Formula: see text] are either permutable or abelian. It is known that a locally graded metaquasihamiltonian group [Formula: see text] is soluble with derived length at most [Formula: see text] and contains a finite normal subgroup [Formula: see text] such that all subgroups of the factor [Formula: see text] are permutable. In this paper, we describe locally graded groups in which the set of all nonmetaquasihamiltonian subgroups satisfies the minimal condition and locally graded groups with the minimal condition on subgroups which are neither abelian nor permutable. Moreover, it is proved here that a finitely generated hyper-(abelian or finite) group whose finite homomorphic images are metaquasihamiltonian is itself metaquasihamiltonian.


1988 ◽  
Vol 108 (1-2) ◽  
pp. 117-132
Author(s):  
Shigeo Koshitani

SynopsisLet J(FG) be the Jacobson radical of the group algebra FG of a finite groupG with a Sylow 3-subgroup which is extra-special of order 27 of exponent 3 over a field F of characteristic 3, and let t(G) be the least positive integer t with J(FG)t = 0. In this paper, we prove that t(G) = 9 if G has a normal subgroup H such that (|G:H|, 3) = 1 and if H is either 3-solvable, SL(3,3) or the Tits simple group 2F4(2)'.


1994 ◽  
Vol 116 (2) ◽  
pp. 253-273
Author(s):  
A. W. Mason ◽  
R. W. K. Odoni

AbstractLet d be a square-free positive integer and let be the ring of integers of the imaginary quadratic number field ℚ(√ − d) The Bianchi groups are the groups SL2() (or PSL2(). Let m be the order of index m in . In this paper we prove that for each d there exist infinitely many m for which SL2(m)/NE2(m) has a free, non-cyclic quotient, where NE2(m) is the normal subgroup of SL2(m) generated by the elementary matrices. When d is not a prime congruent to 3 (mod 4) this result is true for all but finitely many m. The proofs are based on the fundamental paper of Zimmert and its generalization due to Grunewald and Schwermer.The results are used to extend earlier work of Lubotzky on non-congruence subgroups of SL2(), which involves the concept of the ‘non-congruence crack’. In addition the results highlight a number of low-dimensional anomalies. For example, it is known that [SLn(m), SLnm)] = En(m), when n ≥ 3, where [SLn(m), SLn(m)] is the commutator subgroup of SL(m) and En(m) is the subgroup of SLn(m) generated by the elementary matrices. Our results show that this is not always true when n = 2.


Sign in / Sign up

Export Citation Format

Share Document