scholarly journals On the peakon inverse problem for the Degasperis-Procesi equation

2017 ◽  
Vol 25 (2) ◽  
Author(s):  
Keivan Mohajer

Abstract The peakon inverse problem for the Degasperis-Procesi equation is solved directly on the real line, using Cauchy biorthogonal polynomials, without any additional transformation to a “string”-type boundary value problem known from prior works.

2011 ◽  
Vol 2011 (1) ◽  
pp. 26 ◽  
Author(s):  
Giovanni Cupini ◽  
Cristina Marcelli ◽  
Francesca Papalini

2021 ◽  
Vol 18 (5) ◽  
Author(s):  
Francesco Aldo Costabile ◽  
Maria Italia Gualtieri ◽  
Anna Napoli

AbstractGeneral nonlinear high odd-order differential equations with Lidstone–Euler boundary conditions of second type are treated both theoretically and computationally. First, the associated interpolation problem is considered. Then, a theorem of existence and uniqueness of the solution to the Lidstone–Euler second-type boundary value problem is given. Finally, for a numerical solution, two different approaches are illustrated and some numerical examples are included to demonstrate the validity and applicability of the proposed algorithms.


1988 ◽  
Vol 31 (1) ◽  
pp. 79-84
Author(s):  
P. W. Eloe ◽  
P. L. Saintignon

AbstractLet I = [a, b] ⊆ R and let L be an nth order linear differential operator defined on Cn(I). Let 2 ≦ k ≦ n and let a ≦ x1 < x2 < … < xn = b. A method of forced mono tonicity is used to construct monotone sequences that converge to solutions of the conjugate type boundary value problem (BVP) Ly = f(x, y),y(i-1) = rij where 1 ≦i ≦ mj, 1 ≦ j ≦ k, mj = n, and f : I X R → R is continuous. A comparison theorem is employed and the method requires that the Green's function of an associated BVP satisfies certain sign conditions.


2008 ◽  
Vol 69 (10) ◽  
pp. 3386-3404 ◽  
Author(s):  
John R. Graef ◽  
Johnny Henderson ◽  
Patricia J.Y. Wong ◽  
Bo Yang

Author(s):  
P. Venkataraman

A nontraditional approach to the nonlinear inverse boundary value problem is illustrated using multiple examples of the Poisson equation. The solutions belong to a class of analytical solutions defined through Bézier functions. The solution represents a smooth function of high order over the domain. The same procedure can be applied to both the forward and the inverse problem. The solution is obtained as a local minimum of the residuals of the differential equations over many points in the domain. The Dirichlet and Neumann boundary conditions can be incorporated directly into the function definition. The primary disadvantage of the process is that it generates continuous solution even if continuity and smoothness are not expected for the solution. In this case they will generate an approximate analytical solution to either the forward or the inverse problem. On the other hand, the method does not need transformation or regularization, and is simple to apply. The solution is also good at damping the perturbations in measured data driving the inverse problem. In this paper we show that the method is quite robust for linear and nonlinear inverse boundary value problem. We compare the results with a solution to a nonlinear inverse boundary value problem obtained using a traditional approach. The application involves a mixture of symbolic and numeric computations and uses a standard unconstrained numerical optimizer.


Sign in / Sign up

Export Citation Format

Share Document