scholarly journals Lidstone–Euler Second-Type Boundary Value Problems: Theoretical and Computational Tools

2021 ◽  
Vol 18 (5) ◽  
Author(s):  
Francesco Aldo Costabile ◽  
Maria Italia Gualtieri ◽  
Anna Napoli

AbstractGeneral nonlinear high odd-order differential equations with Lidstone–Euler boundary conditions of second type are treated both theoretically and computationally. First, the associated interpolation problem is considered. Then, a theorem of existence and uniqueness of the solution to the Lidstone–Euler second-type boundary value problem is given. Finally, for a numerical solution, two different approaches are illustrated and some numerical examples are included to demonstrate the validity and applicability of the proposed algorithms.

Mathematics ◽  
2021 ◽  
Vol 9 (17) ◽  
pp. 2020
Author(s):  
Batirkhan Turmetov ◽  
Valery Karachik ◽  
Moldir Muratbekova

A nonlocal analogue of the biharmonic operator with involution-type transformations was considered. For the corresponding biharmonic equation with involution, we investigated the solvability of boundary value problems with a fractional-order boundary operator having a derivative of the Hadamard-type. First, transformations of the involution type were considered. The properties of the matrices of these transformations were investigated. As applications of the considered transformations, the questions about the solvability of a boundary value problem for a nonlocal biharmonic equation were studied. Modified Hadamard derivatives were considered as the boundary operator. The considered problems covered the Dirichlet and Neumann-type boundary conditions. Theorems on the existence and uniqueness of solutions to the studied problems were proven.


2020 ◽  
Vol 12 (1) ◽  
pp. 173-188
Author(s):  
Ya.O. Baranetskij ◽  
P.I. Kalenyuk ◽  
M.I. Kopach ◽  
A.V. Solomko

In this paper we continue to investigate the properties of the problem with nonlocal conditions, which are multipoint perturbations of mixed boundary conditions, started in the first part. In particular, we construct a generalized transform operator, which maps the solutions of the self-adjoint boundary-value problem with mixed boundary conditions to the solutions of the investigated multipoint problem. The system of root functions $V(L)$ of operator $L$ for multipoint problem is constructed. The conditions under which the system $V(L)$ is complete and minimal, and the conditions under which it is the Riesz basis are determined. In the case of an elliptic equation the conditions of existence and uniqueness of the solution for the problem are established.


2001 ◽  
Vol 6 (1) ◽  
pp. 147-155 ◽  
Author(s):  
S. Rutkauskas

The Dirichlet type problem for the weakly related elliptic systems of the second order degenerating at an inner point is discussed. Existence and uniqueness of the solution in the Holder class of the vector‐functions is proved.


Mathematics ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 1899
Author(s):  
Ahmed Alsaedi ◽  
Amjad F. Albideewi ◽  
Sotiris K. Ntouyas ◽  
Bashir Ahmad

In this paper, we derive existence and uniqueness results for a nonlinear Caputo–Riemann–Liouville type fractional integro-differential boundary value problem with multi-point sub-strip boundary conditions, via Banach and Krasnosel’skii⏝’s fixed point theorems. Examples are included for the illustration of the obtained results.


1988 ◽  
Vol 11 (2) ◽  
pp. 275-284
Author(s):  
Chaitan P. Gupta

Fourth order boundary value problems arise in the study of the equilibrium of an elastaic beam under an external load. The author earlier investigated the existence and uniqueness of the solutions of the nonlinear analogues of fourth order boundary value problems that arise in the equilibrium of an elastic beam depending on how the ends of the beam are supported. This paper concerns the existence and uniqueness of solutions of the fourth order boundary value problems with periodic boundary conditions.


2003 ◽  
Vol 2003 (11) ◽  
pp. 553-567 ◽  
Author(s):  
M. Denche ◽  
A. Memou

We prove the existence and uniqueness of a strong solution for a linear third-order equation with integral boundary conditions. The proof uses energy inequalities and the density of the range of the generated operator.


2019 ◽  
Vol 14 (3) ◽  
pp. 184-201
Author(s):  
A.M. Akhtyamov

It is shown that for the asymmetric diffusion operator the case when the characteristic determinant is identically equal to zero is impossible and the only possible degenerate boundary conditions are the Cauchy conditions. In the case of a symmetric diffusion operator, the characteristic determinant is identically equal to zero if and only if the boundary conditions are false–periodic boundary conditions and is identically equal to a constant other than zero if and only if its boundary conditions are generalized Cauchy conditions. All degenerate boundary conditions for a spectral problem with a third–order differential equation y'''(x) = λy(x) are described. The general form of degenerate boundary conditions for the fourth–order differentiation operator D4 is found. 12 classes of boundary value eigenvalue problems are described for the operator D4, the spectrum of which fills the entire complex plane. It is known that spectral problems whose spectrum fills the entire complex plane exist for differential equations of any even order. John Locker posed the following problem (eleventh problem): are there similar problems for odd–order differential equations? A positive answer is given to this question. It is proved that spectral problems, the spectrum of which fills the entire complex plane, exist for differential equations of any odd order. Thus, the problem of John Locker is resolved. John Locker posed a problem (tenth problem): can a spectral boundary–value problem have a finite spectrum? Boundary value problems with a polynomial occurrence of a spectral parameter in a differential equation are considered. It is shown that the corresponding boundary–value problem can have a predetermined finite spectrum in the case when the roots of the characteristic equation are multiple. If the roots of the characteristic equation are not multiple, then there can be no finite spectrum. Thus, John Locker’s tenth problem is resolved.


2015 ◽  
Vol 23 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Francesco A. Costabile ◽  
Anna Napoli

AbstractA multipoint boundary value problem is considered. The existence and uniqueness of solution is proved. Then, for the numerical solution, a general collocation method is proposed.Numerical experiments confirm theoretical results.


Sign in / Sign up

Export Citation Format

Share Document