laplacian operators
Recently Published Documents


TOTAL DOCUMENTS

123
(FIVE YEARS 34)

H-INDEX

13
(FIVE YEARS 2)

2022 ◽  
Vol 40 ◽  
pp. 1-10
Author(s):  
Dionicio Pastor Dallos Santos

Using Leray-Schauder degree theory we study the existence of at least one solution for the boundary value problem of the type\[\left\{\begin{array}{lll}(\varphi(u' ))' = f(t,u,u') & & \\u'(0)=u(0), \ u'(T)= bu'(0), & & \quad \quad \end{array}\right.\] where $\varphi: \mathbb{R}\rightarrow \mathbb{R}$ is a homeomorphism such that $\varphi(0)=0$, $f:\left[0, T\right]\times \mathbb{R} \times \mathbb{R}\rightarrow \mathbb{R} $ is a continuous function, $T$ a positive real number, and $b$ some non zero real number.


2021 ◽  
Vol 6 (1) ◽  
pp. 18
Author(s):  
Alexandru Tudorache ◽  
Rodica Luca

We investigate the existence and multiplicity of positive solutions for a system of Riemann–Liouville fractional differential equations with r-Laplacian operators and nonnegative singular nonlinearities depending on fractional integrals, supplemented with nonlocal uncoupled boundary conditions which contain Riemann–Stieltjes integrals and various fractional derivatives. In the proof of our main results we apply the Guo–Krasnosel’skii fixed point theorem of cone expansion and compression of norm type.


2021 ◽  
Vol 33 (1) ◽  
pp. 141-153
Author(s):  
N. Ustinov

Sufficient conditions are provided for the existence of a ground state solution for the problem generated by the fractional Sobolev inequality in Ω ∈ C 2 : \Omega \in C^2: ( − Δ ) S p s u ( x ) + u ( x ) = u 2 s ∗ − 1 ( x ) (-\Delta )_{Sp}^s u(x) + u(x) = u^{2^*_s-1}(x) . Here ( − Δ ) S p s (-\Delta )_{Sp}^s stands for the s s th power of the conventional Neumann Laplacian in Ω ⋐ R n \Omega \Subset \mathbb {R}^n , n ≥ 3 n \geq 3 , s ∈ ( 0 , 1 ) s \in (0, 1) , 2 s ∗ = 2 n / ( n − 2 s ) 2^*_s = 2n/(n-2s) . For the local case where s = 1 s = 1 , corresponding results were obtained earlier for the Neumann Laplacian and Neumann p p -Laplacian operators.


Geophysics ◽  
2021 ◽  
pp. 1-42
Author(s):  
Guangchi Xing ◽  
Tieyuan Zhu

We formulate the Fréchet kernel computation using the adjoint-state method based on a fractional viscoacoustic wave equation. We first numerically prove that both the 1/2- and the 3/2-order fractional Laplacian operators are self-adjoint. Using this property, we show that the adjoint wave propagator preserves the dispersion and compensates the amplitude, while the time-reversed adjoint wave propagator behaves identically as the forward propagator with the same dispersion and dissipation characters. Without introducing rheological mechanisms, this formulation adopts an explicit Q parameterization, which avoids the implicit Q in the conventional viscoacoustic/viscoelastic full waveform inversion ( Q-FWI). In addition, because of the decoupling of operators in the wave equation, the viscoacoustic Fréchet kernel is separated into three distinct contributions with clear physical meanings: lossless propagation, dispersion, and dissipation. We find that the lossless propagation kernel dominates the velocity kernel, while the dissipation kernel dominates the attenuation kernel over the dispersion kernel. After validating the Fréchet kernels using the finite-difference method, we conduct a numerical example to demonstrate the capability of the kernels to characterize both velocity and attenuation anomalies. The kernels of different misfit measurements are presented to investigate their different sensitivities. Our results suggest that rather than the traveltime, the amplitude and the waveform kernels are more suitable to capture attenuation anomalies. These kernels lay the foundation for the multiparameter inversion with the fractional formulation, and the decoupled nature of them promotes our understanding of the significance of different physical processes in the Q-FWI.


2021 ◽  
Vol 24 (5) ◽  
pp. 1301-1355
Author(s):  
Marta D’Elia ◽  
Mamikon Gulian ◽  
Hayley Olson ◽  
George Em Karniadakis

Abstract Nonlocal and fractional-order models capture effects that classical partial differential equations cannot describe; for this reason, they are suitable for a broad class of engineering and scientific applications that feature multiscale or anomalous behavior. This has driven a desire for a vector calculus that includes nonlocal and fractional gradient, divergence and Laplacian type operators, as well as tools such as Green’s identities, to model subsurface transport, turbulence, and conservation laws. In the literature, several independent definitions and theories of nonlocal and fractional vector calculus have been put forward. Some have been studied rigorously and in depth, while others have been introduced ad-hoc for specific applications. The goal of this work is to provide foundations for a unified vector calculus by (1) consolidating fractional vector calculus as a special case of nonlocal vector calculus, (2) relating unweighted and weighted Laplacian operators by introducing an equivalence kernel, and (3) proving a form of Green’s identity to unify the corresponding variational frameworks for the resulting nonlocal volume-constrained problems. The proposed framework goes beyond the analysis of nonlocal equations by supporting new model discovery, establishing theory and interpretation for a broad class of operators, and providing useful analogues of standard tools from the classical vector calculus.


2021 ◽  
Vol 297 ◽  
pp. 508-535
Author(s):  
Guglielmo Feltrin ◽  
Fabio Zanolin

Symmetry ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1819
Author(s):  
Q-Heung Choi ◽  
Tacksun Jung

The research of the fractional Orlicz-Sobolev space and the fractional N-Laplacian operators will give the development of nonlinear elasticity theory, electro rheological fluids, non-Newtonian fluid theory in a porous medium as well as Probability and Analysis as they proved to be accurate models to describe different phenomena in Physics, Finance, Image processing and Ecology. We study the number of weak solutions for one-dimensional fractional N-Laplacian systems in the product of the fractional Orlicz-Sobolev spaces, where the corresponding functionals of one-dimensional fractional N-Laplacian systems are even and symmetric. We obtain two results for these problems. One result is that these problems have at least one nontrivial solution under some conditions. The other result is that these problems also have infinitely many weak solutions on the same conditions. We use the variational approach, critical point theory and homology theory on the product of the fractional Orlicz-Sobolev spaces.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Bibo Zhou ◽  
Lingling Zhang

AbstractIn this paper, we are concerned with a kind of tempered fractional differential equation Riemann–Stieltjes integral boundary value problems with p-Laplacian operators. By means of the sum-type mixed monotone operators fixed point theorem based on the cone $P_{h}$ P h , we obtain not only the local existence with a unique positive solution, but also construct two successively monotone iterative sequences for approximating the unique positive solution. Finally, we present an example to illustrate our main results.


Sign in / Sign up

Export Citation Format

Share Document