Shortest Path Planning Strategies through Evolutionary Algorithms

2007 ◽  
Vol 16 (4) ◽  
Author(s):  
K. Ramachandra Rao ◽  
Nitish Saini
10.5772/5787 ◽  
2005 ◽  
Vol 2 (3) ◽  
pp. 21
Author(s):  
Kristo Heero ◽  
Alvo Aabloo ◽  
Maarja Kruusmaa

This paper examines path planning strategies in partially unknown dynamic environemnts and introduces an approach to learning innovative routes. The approach is verified against shortest path planning with a distance transform algorithm, local and global replanning and suboptimal route following in unknown, partially unknown, static and dynamic environments. We show that the learned routes are more reliable and when traversed repeatedly the robot's behaviour becomes more predictable. The test results also suggest that the robot's behaviour depends on knowledge about the environemnt but not about the path planning strategy used.


Author(s):  
Edward Reutzel ◽  
Kevin Gombotz ◽  
Richard Martukanitz ◽  
Panagiotis Michaleris

Author(s):  
Haipeng Chen ◽  
Wenxing Fu ◽  
Yuze Feng ◽  
Jia Long ◽  
Kang Chen

In this article, we propose an efficient intelligent decision method for a bionic motion unmanned system to simulate the formation change during the hunting process of the wolves. Path planning is a burning research focus for the unmanned system to realize the formation change, and some traditional techniques are designed to solve it. The intelligent decision based on evolutionary algorithms is one of the famous path planning approaches. However, time consumption remains to be a problem in the intelligent decisions of the unmanned system. To solve the time-consuming problem, we simplify the multi-objective optimization as the single-objective optimization, which was regarded as a multiple traveling salesman problem in the traditional methods. Besides, we present the improved genetic algorithm instead of evolutionary algorithms to solve the intelligent decision problem. As the unmanned system’s intelligent decision is solved, the bionic motion control, especially collision avoidance when the system moves, should be guaranteed. Accordingly, we project a novel unmanned system bionic motion control of complex nonlinear dynamics. The control method can effectively avoid collision in the process of system motion. Simulation results show that the proposed simplification, improved genetic algorithm, and bionic motion control method are stable and effective.


Author(s):  
Nikolai Moshchuk ◽  
Shih-Ken Chen

Parallel parking can be a difficult task for novice drivers or drivers who seldom drive in congested city where parking space is limited. Parking Assist is an innovative system designed to aid the driver in performing sometimes difficult parallel parking maneuvers. Many companies are developing such systems with major automakers, such as Valeo, Aisin Seiki, Hella, Robert Bosch, and TRW. For example, Toyota IPA (Intelligent Parking Assist) system uses a rear view camera and automatically steer the vehicle into the parking spot with driver controlling braking. This paper describes the development of parking path planning strategies based on available parking space. A virtual turn center will first be defined and derived based on vehicle configuration. Required parking space for one or two cycle parking maneuver will then be determined. Path planning strategies for both one and two turn parking maneuvers will be developed next. Finally CarSim simulation will be performed to verify the design.


2022 ◽  
pp. 1-13
Author(s):  
Ifat Jahangir ◽  
Darun Barazanchy ◽  
Floris-Jan van Zanten ◽  
Michel van Tooren

2021 ◽  
Author(s):  
Brian Sotolongo ◽  
Ayan Dutta ◽  
Stephen Sisley ◽  
Gokarna Sharma

Sign in / Sign up

Export Citation Format

Share Document