scholarly journals Year by year closure adjustment of global mean sea level budget, inclusive of lumped snow, water vapor, and permafrost mass components

2020 ◽  
Vol 10 (1) ◽  
pp. 83-90
Author(s):  
H. Bâki Iz ◽  
C. K. Shum

AbstractGlobal mean sea level budget is rigorously adjusted during the period 2005–2015 with an emphasis on closing the budget on a year by year basis as opposed to using linear trends of global mean sea level components. The adjustment also accounts for the effect of snow, water vapor, and permafrost mass components as a lump sum. The approach provides better resolution for evaluating individual contribution of each budget component year by year in tandem with the other components. Year by year budget misclosures and the confidence intervals of the year by year adjusted budget components are suggestive of an increasing non-linearity in satellite altimetry derived global mean sea level measurements starting in 2012, which are not present in the other components. The solution also generates time series iteratively for the lumped snow, water vapor, and permafrost mass components as well as an estimate for its linear trend, 0.06±0.59 mm/yr. Nonetheless, its standard error is markedly large because of the un-modeled variability in satellite altimetry observed yearly averaged global mean sea level anomalies.

Author(s):  
R. Steven Nerem ◽  
Michaël Ablain ◽  
Anny Cazenave ◽  
John Church ◽  
Eric Leuliette

2013 ◽  
Vol 88 (4) ◽  
pp. 351-361 ◽  
Author(s):  
Olivier Henry ◽  
Michael Ablain ◽  
Benoit Meyssignac ◽  
Anny Cazenave ◽  
Dallas Masters ◽  
...  

2017 ◽  
Vol 122 (11) ◽  
pp. 8371-8384 ◽  
Author(s):  
B. D. Beckley ◽  
P. S. Callahan ◽  
D. W. Hancock ◽  
G. T. Mitchum ◽  
R. D. Ray

2020 ◽  
Vol 10 (1) ◽  
pp. 29-40
Author(s):  
H. Bâki İz ◽  
C.K. Shum

AbstractRecent studies reported a uniform global sea level acceleration during the satellite altimetry era (1993–2017) by analyzing globally averaged satellite altimetry measurements. Here, we discuss potential omission errors that were not thoroughly addressed in detecting and estimating the reported global sea level acceleration in these studies. Our analyses results demonstrate that the declared acceleration in recent studies can also be explained equally well by alternative kinematic models based on previously well-established multi-decadal global mean sea level variations of various origins, which suggests prudence before declaring the presence of an accelerating global mean sea level with confidence during the satellite altimetry era.


2020 ◽  
Vol 10 (1) ◽  
pp. 1-6
Author(s):  
H. Bâki Iz ◽  
C. K. Shum

AbstractCurrent studies in global mean sea level, GMSL, studies assess the closure/misclosure of the GMSL budget components and their uncertainties. Because Earth’s hydrosphere conserves water, a closed global mean sea level budget with a consistent set of estimates and their statistics is necessary. An unclosed budget means that there are problems to be addressed such as biases in the budget components, unreliable error statistics about the estimates, unknown or known but unmodeled budget components. In a misclosed global mean sea level budget, as practiced in recent studies, the trend estimates for the budget components and their errors account only for the anomalies of each budget component in isolation. On the other hand, the trend of each series must consider the trends of the other series in tandem such that the global mean sea level budget is closed for a holistic assessment, which can only be achieved by adjusting global mean sea level budget components simultaneously. In this study, we demonstrate a statistical protocol to ameliorate this deficiency, which potentially have implications for future sea level science studies, including the future Intergovernmental Panel on Climate Change (IPCC) Assessment Reports, and the US Climate Assessment Reports.


2019 ◽  
Author(s):  
Michaël Ablain ◽  
Benoit Meyssignac ◽  
Lionel Zawadzki ◽  
Rémi Jugier ◽  
Aurélien Ribes ◽  
...  

Abstract. Satellite altimetry missions now provide more than 25 years of accurate, continuous and quasi-global measurements of sea level along the reference ground track of TOPEX/Poseidon. These measurements are used by different groups to build the Global Mean Sea Level (GMSL) record, an essential climate change indicator. Estimating a realistic uncertainty of the GMSL record is of crucial importance for climate studies such as estimating precisely the current rate and acceleration of sea level, analyzing the closure of the sea level budget, understanding the causes of sea level rise, detecting and attributing the response of sea level to anthropogenic activity, or estimating the Earth energy imbalance. (Ablain et al., 2015) estimated the uncertainty of the GMSL trend over the period 1993–2014 by thoroughly analyzing the error budget of the satellite altimeters and showed that it amounts to ±0.5 mm/yr (90 % confidence level). In this study, we extend (Ablain et al., 2015) analysis by providing a comprehensive description of the uncertainties in the satellite GMSL record. We analyse 25 years of satellite altimetry data and estimate for the first time the error variance-covariance matrix for the GMSL record with a time resolution of 10 days. Three types of errors are modelled (drifts, biases, noise) and combined together to derive a realistic estimate of the GMSL error variance-covariance matrix. From the error variance-covariance matrix we derive a 90 % confidence envelop of the GMSL record on a 10-day basis. Then we use a least square approach and the error variance-covariance matrix to estimate the GMSL trend and acceleration uncertainties over any time periods of 5 years and longer in between October 1992 and December 2017. Over 1993–2017 we find a GMSL trend of 3.35 ± 0.4 mm/yr within a 90 % Confidence Level (CL) and a GMSL acceleration of 0.12 ± 0.07 mm/yr2 (90 % CL). This is in agreement (within error bars) with previous studies. The full GMSL error variance-covariance matrix is freely available online: https://doi.org/10.17882/58344 (Ablain et al., 2018).


2019 ◽  
Vol 11 (3) ◽  
pp. 1189-1202 ◽  
Author(s):  
Michaël Ablain ◽  
Benoît Meyssignac ◽  
Lionel Zawadzki ◽  
Rémi Jugier ◽  
Aurélien Ribes ◽  
...  

Abstract. Satellite altimetry missions now provide more than 25 years of accurate, continuous and quasi-global measurements of sea level along the reference ground track of TOPEX/Poseidon. These measurements are used by different groups to build the Global Mean Sea Level (GMSL) record, an essential climate change indicator. Estimating a realistic uncertainty in the GMSL record is of crucial importance for climate studies, such as assessing precisely the current rate and acceleration of sea level, analysing the closure of the sea-level budget, understanding the causes of sea-level rise, detecting and attributing the response of sea level to anthropogenic activity, or calculating the Earth's energy imbalance. Previous authors have estimated the uncertainty in the GMSL trend over the period 1993–2014 by thoroughly analysing the error budget of the satellite altimeters and have shown that it amounts to ±0.5 mm yr−1 (90 % confidence level). In this study, we extend our previous results, providing a comprehensive description of the uncertainties in the satellite GMSL record. We analysed 25 years of satellite altimetry data and provided for the first time the error variance–covariance matrix for the GMSL record with a time resolution of 10 days. Three types of errors have been modelled (drifts, biases, noises) and combined together to derive a realistic estimate of the GMSL error variance–covariance matrix. From the latter, we derived a 90 % confidence envelope of the GMSL record on a 10 d basis. Then we used a least squared approach and the error variance–covariance matrix to assess the GMSL trend and acceleration uncertainties over any 5-year time periods and longer in between October 1992 and December 2017. Over 1993–2017, we have found a GMSL trend of 3.35±0.4 mm yr−1 within a 90 % confidence level (CL) and a GMSL acceleration of 0.12±0.07 mm yr−2 (90 % CL). This is in agreement (within error bars) with previous studies. The full GMSL error variance–covariance matrix is freely available online: https://doi.org/10.17882/58344 (Ablain et al., 2018).


Ocean Science ◽  
2009 ◽  
Vol 5 (2) ◽  
pp. 193-201 ◽  
Author(s):  
M. Ablain ◽  
A. Cazenave ◽  
G. Valladeau ◽  
S. Guinehut

Abstract. A new error budget assessment of the global Mean Sea Level (MSL) determined by TOPEX/Poseidon and Jason-1 altimeter satellites between January 1993 and June 2008 is presented using last altimeter standards. We discuss all potential errors affecting the calculation of the global MSL rate. We also compare altimetry-based sea level with tide gauge measurements over the altimetric period. Applying a statistical approach, this allows us to provide a realistic error budget of the MSL rise measured by satellite altimetry. These new calculations highlight a reduction in the rate of sea level rise since 2005, by ~2 mm/yr. This represents a 60% reduction compared to the 3.3 mm/yr sea level rise (glacial isostatic adjustment correction applied) measured between 1993 and 2005. Since November 2005, MSL is accurately measured by a single satellite, Jason-1. However the error analysis performed here indicates that the recent reduction in MSL rate is real.


2012 ◽  
Vol 39 (18) ◽  
Author(s):  
Don P. Chambers ◽  
Mark A. Merrifield ◽  
R. Steven Nerem

2021 ◽  
Author(s):  
Jacqueline Austermann ◽  
Mark Hoggard ◽  
Konstantin Latychev ◽  
Fred Richards ◽  
Jerry Mitrovica

It is generally agreed that the Last Interglacial (LIG; ~130-115ka) was a time when global average temperatures and global mean sea level were higher than they are today. However, the exact timing, magnitude, and spatial pattern of ice melt is much debated. One difficulty in extracting past global mean sea level from local observations is that their elevations need to be corrected for glacial isostatic adjustment (GIA), which requires knowledge of Earth’s internal viscoelastic structure. While this structure is generally assumed to be radially symmetric, evidence from seismology, geodynamics, and mineral physics indicates that large lateral variations in viscosity exist within the mantle. In this study, we construct a new model of Earth’s internal structure by converting shear wave speed into viscosity using parameterisations from mineral physics experiments and geodynamical constraints on Earth’s thermal structure. We use this 3D Earth structure, which includes both variations in lithospheric thickness and lateral variations in viscosity, to calculate the first 3D GIA prediction for LIG sea level. We find that the difference between predictions with and without lateral Earth structure can be meters to 10s of meters in the near field of former ice sheets, and up to a few meters in their far field. We demonstrate how forebulge dynamics and continental levering are affected by laterally varying Earth structure, with a particular focus on those sites with prominent LIG sea level records. Results from three 3D GIA calculations show that accounting for lateral structure acts to increase local sea level by up to ~1.5m at the Seychelles and minimally decrease it in Western Australia. We acknowledge that this result is only based on a few simulations, but if robust, this shift brings estimates of global mean sea level from these two sites into closer agreement with each other. We further demonstrate that simulations with a suitable radial viscosity profile can be used to locally approximate the 3D GIA result, but that these radial profiles cannot be found by simply averaging viscosity below the sea level indicator site.


Sign in / Sign up

Export Citation Format

Share Document