tide gauge measurements
Recently Published Documents


TOTAL DOCUMENTS

37
(FIVE YEARS 7)

H-INDEX

11
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Hiroyuki K. M. Tanaka ◽  
Masaatsu Aichi ◽  
Szabolcs József Balogh ◽  
Cristiano Bozza ◽  
Rosa Coniglione ◽  
...  

Abstract Meteorological-tsunami-like (or meteotsunami-like) periodic oscillation was muographically detected with the Tokyo-Bay Seafloor Hyper-Kilometric Submarine Deep Detector (TS-HKMSDD) deployed in the underwater highway called the Trans-Tokyo Bay Expressway or Tokyo Bay Aqua-Line (TBAL). It was detected right after the arrival of the 2021 Typhoon-16 that passed through the region 400 km south of the bay. The measured oscillation period and decay time were respectively 3 hours and 10 hours. These measurements were found to be consistent with previous tide gauge measurements. Meteotsunamis are known to take place in bays and lakes, and the temporal and spatial characteristics of meteotsunamis are similar to seismic tsunamis. However, their generation and propagation mechanisms are not well understood. The current result indicates that a combination of muography and trans-bay or trans-lake underwater tunnels will offer an additional tool to measure meteotsunamis at locations where tide gauges are unavailable.


2021 ◽  
Vol 13 (12) ◽  
pp. 5469-5482
Author(s):  
Pierre Prandi ◽  
Jean-Christophe Poisson ◽  
Yannice Faugère ◽  
Amandine Guillot ◽  
Gérald Dibarboure

Abstract. We present a new Arctic sea level anomaly dataset based on the combination of three altimeter missions using an optimal interpolation scheme. Measurements from SARAL/AltiKa, CryoSat-2 and Sentinel-3A are blended together, providing an unprecedented resolution for this type of product. Such high-resolution products are necessary to tackle some contemporaneous science questions in the basin. We use the adaptive retracker to process both open ocean and lead echoes on SARAL/AltiKa, thus removing the need to estimate a bias between open ocean and ice-covered areas. The usual processing approach, involving an empirical retracking algorithm on specular echoes, is applied on CryoSat-2 and Sentinel-3A synthetic aperture radar (SAR) mode echoes. SARAL/AltiKa also provides the baseline for the cross-calibration of CryoSat-2 and Sentinel-3A data. The final gridded fields cover all latitudes north of 50∘ N, on a 25 km EASE2 grid, with one grid every 3 d over 3 years from July 2016 to April 2019. When compared to tide gauge measurements available in the Arctic Ocean, the combined product exhibits a much better performance than mono-mission datasets with a mean correlation of 0.78 and a mean root-mean-square deviation (RMSd) of 5 cm. The effective temporal resolution of the combined product is 3 times better than a single mission analysis. This dataset can be downloaded from https://doi.org/10.24400/527896/a01-2020.001 (Prandi, 2020).


2021 ◽  
Vol 147 (4) ◽  
pp. 04021020
Author(s):  
Xin Zhou ◽  
Guoquan Wang ◽  
Kuan Wang ◽  
Hanlin Liu ◽  
Haimin Lyu ◽  
...  

2020 ◽  
Vol 12 (23) ◽  
pp. 3970
Author(s):  
Antonio Sánchez-Román ◽  
Ananda Pascual ◽  
Marie-Isabelle Pujol ◽  
Guillaume Taburet ◽  
Marta Marcos ◽  
...  

The quality of the Data Unification and Altimeter Combination System (DUACS) Sentinel-3A altimeter data in the coastal area of the European seas is investigated through a comparison with in situ tide gauge measurements. The comparison was also conducted using altimetry data from Jason-3 for inter-comparison purposes. We found that Sentinel-3A improved the root mean square differences (RMSD) by 13% with respect to the Jason-3 mission. In addition, the variance in the differences between the two datasets was reduced by 25%. To explain the improved capture of Sea Level Anomaly by Sentinel-3A in the coastal band, the impact of the measurement noise on the synthetic aperture radar altimeter, the distance to the coast, and Long Wave Error correction applied on altimetry data were checked. The results confirmed that the synthetic aperture radar altimeter instrument onboard the Sentinel-3A mission better solves the signal in the coastal band. Moreover, the Long Wave Error processing contributes to reduce the errors in altimetry, enhancing the consistency between the altimeter and in situ datasets.


2020 ◽  
Vol 12 (21) ◽  
pp. 3543
Author(s):  
Marijan Grgić ◽  
Josip Bender ◽  
Tomislav Bašić

Different space-borne geodetic observation methods combined with in-situ measurements enable resolving the single-point vertical land motion (VLM) and/or the VLM of an area. Continuous Global Navigation Satellite System (GNSS) measurements can solely provide very precise VLM trends at specific sites. VLM area monitoring can be performed by Interferometric Synthetic Aperture Radar (InSAR) technology in combination with the GNSS in-situ data. In coastal zones, an effective VLM estimation at tide gauge sites can additionally be derived by comparing the relative sea-level trends computed from tide gauge measurements that are related to the land to which the tide gauges are attached, and absolute trends derived from the radar satellite altimeter data that are independent of the VLM. This study presents the conjoint analysis of VLM of the Dubrovnik area (Croatia) derived from the European Space Agency’s Sentinel-1 InSAR data available from 2014 onwards, continuous GNSS observations at Dubrovnik site obtained from 2000, and differences of the sea-level change obtained from all available satellite altimeter missions for the Dubrovnik area and tide gauge measurements in Dubrovnik from 1992 onwards. The computed VLM estimates for the overlapping period of three observation methods, i.e., from GNSS observations, sea-level differences, and Sentinel-1 InSAR data, are −1.93±0.38 mm/yr, −2.04±0.22 mm/yr, and −2.24±0.46 mm/yr, respectively.


2020 ◽  
Vol 10 (1) ◽  
pp. 62-68
Author(s):  
H. Bâki Iz ◽  
C. K. Shum ◽  
T. Y. Yang

AbstractThis study demonstrates that absolute (geocentric) and relative sea level trends, sea level acceleration, low frequency sea level variations and linear trends in vertical crustal movements experienced at a tide gauge station can be estimated simultaneously using conflated satellite altimetry and tide gauge measurements without the aid of GPS measurements. The formulation is the first of its kind in sea level studies and its effectiveness is exemplified using tide gauge, and satellite altimetry measurements carried out in the vicinity of a tide gauge station.


Proceedings ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 11 ◽  
Author(s):  
Puente ◽  
Valdés

GNSS reflectometry (GNSS-R) a technique for the study of variations in the height of sea level and inland waters, and for the study of soil moisture, based on the comparison of the direct and reflected noise signal. The main advantage of this method is that allows the connection between sea level measurements and the global reference frame. The purpose of this contribution is to present the GNSS-R analysis service at the Geodesy department of the National Geographic Institute of Spain and to compare the sea level time series determined by means of GNSS-R with tide gauge measurements. Two different GNSS-R methods using multi-constellation and multi-frequency data are compared: Lomb-Scargle Periodogram and Inverse Modelling. This analysis is performed for 3 GNSS antennas collocated to tide gauges along the Spanish coast. Eventually, advantages and disadvantages of this method are discussed.


2017 ◽  
Vol 40 (5) ◽  
pp. 297-314 ◽  
Author(s):  
Stylianos Bitharis ◽  
Dimitrios Ampatzidis ◽  
Christos Pikridas ◽  
Aristeidis Fotiou ◽  
Dimitrios Rossikopoulos ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document