Automatic event detection in basketball using HMM with energy based defensive assignment

2019 ◽  
Vol 15 (2) ◽  
pp. 141-153 ◽  
Author(s):  
Suraj Keshri ◽  
Min-hwan Oh ◽  
Sheng Zhang ◽  
Garud Iyengar

Abstract We propose a unsupervised learning framework for automatically labeling events in a basketball game. Our framework uses the the optical player tracking data in the NBA. We first learn the time series of defensive assignments using a novel player and location dependent attraction based model which uses hidden Markov models (HMMs), Gaussian processes, and a “bond breaking” model for changes in defensive assignments. Next, we use the learned defensive assignments as an input to a set of HMMs that automatically detect events such as ball screens, drives and post-ups. We show that our models provide significant improvements over existing benchmarks both on defensive assignments and event detection.

Entropy ◽  
2019 ◽  
Vol 21 (10) ◽  
pp. 1013 ◽  
Author(s):  
David Cuesta-Frau ◽  
Antonio Molina-Picó ◽  
Borja Vargas ◽  
Paula González

Many measures to quantify the nonlinear dynamics of a time series are based on estimating the probability of certain features from their relative frequencies. Once a normalised histogram of events is computed, a single result is usually derived. This process can be broadly viewed as a nonlinear I R n mapping into I R , where n is the number of bins in the histogram. However, this mapping might entail a loss of information that could be critical for time series classification purposes. In this respect, the present study assessed such impact using permutation entropy (PE) and a diverse set of time series. We first devised a method of generating synthetic sequences of ordinal patterns using hidden Markov models. This way, it was possible to control the histogram distribution and quantify its influence on classification results. Next, real body temperature records are also used to illustrate the same phenomenon. The experiments results confirmed the improved classification accuracy achieved using raw histogram data instead of the PE final values. Thus, this study can provide a very valuable guidance for the improvement of the discriminating capability not only of PE, but of many similar histogram-based measures.


2019 ◽  
Vol 24 (1) ◽  
pp. 14 ◽  
Author(s):  
Luis Acedo

Hidden Markov models are a very useful tool in the modeling of time series and any sequence of data. In particular, they have been successfully applied to the field of mathematical linguistics. In this paper, we apply a hidden Markov model to analyze the underlying structure of an ancient and complex manuscript, known as the Voynich manuscript, which remains undeciphered. By assuming a certain number of internal states representations for the symbols of the manuscripts, we train the network by means of the α and β -pass algorithms to optimize the model. By this procedure, we are able to obtain the so-called transition and observation matrices to compare with known languages concerning the frequency of consonant andvowel sounds. From this analysis, we conclude that transitions occur between the two states with similar frequencies to other languages. Moreover, the identification of the vowel and consonant sounds matches some previous tentative bottom-up approaches to decode the manuscript.


Sign in / Sign up

Export Citation Format

Share Document