Bats can reach 3626 m a.s.l. in Papua New Guinea: altitudinal range extensions for six rainforest bat species

Mammalia ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Pita K. Amick ◽  
Katerina Sam ◽  
Gendio Drumo ◽  
Pagi S. Toko ◽  
Vojtech Novotny

Abstract Bats represent an important, but poorly known component of mammal diversity in Papua New Guinea (PNG). Our surveys in two altitudinal rainforest gradients recorded 43 bat species of which six (Dobsonia minor, D. praedatrix, Hipposideros calcaratus, H. maggietaylorae, Miniopterus australis, Miniopterus sp.) fell outside of their known altitudinal ranges. This enlargement could reflect the lack of past sampling, or a genuine range extension, potentially in response to climate change. Our study highlights the importance of baseline data on the altitudinal distribution of vertebrates, including bats, in PNG for the monitoring of their response to climate change and anthropogenic disturbance.

2020 ◽  
Vol 26 (2) ◽  
pp. 88-101
Author(s):  
Philip Cass

This article presents an overview of the role mainstream  churches can play in mitigating the climate change crisis in the Pacific and their role in facilitating climate induced migration. It builds on earlier work by the author (Cass, 2018; 2020) with a focus on Fiji, Tonga and Papua New Guinea. Both Catholic and Protestant churches share a concern for the future of the planet based on the principles of economic, social and climate justice, which complement moral and ecumenical imperatives. The article examines what message the churches convey through the media and the theology that underlines them.


2020 ◽  
Vol 26 (1) ◽  
pp. 148-163
Author(s):  
Philip Cass

This article examines some aspects of climate change communication in Papua New Guinea (PNG), particularly the use of Tok Pisin language. To place the issue in a broader, global context, the article compares the situation in PNG with that of the use of Pidgin English in Nigeria. The article argues that a major project needs to be undertaken to determine the effectiveness of this communication. It suggests drawing on the experience of both the Bougainville Audience Study and the BBC Trusts’ examination of climate change in Nigeria.


Author(s):  
Patrick S. Michael

This paper presents a synthesis related to the assessment of climate change and its impacts on productivity of staple crops in Papua New Guinea (PNG), paying close attention to the change in population in the next 80 years. As much as the changes in the climatic and environmental factors will affect agriculture, evidence available in the literature show increase in global and local population will put additional pressure on agriculture by competing with available land and other resources that support agricultural productivity. The developing and underdeveloped countries are considered to be largely vulnerable as more than 85% of the people depend on subsistence agriculture for rural livelihood. This synthesis showed more than 60–85% of the rural people in PNG depend on sweet potato, banana, Colocasia taro, and greater yam. Projection of the population showed there will be 22–31 million people by 2100 and will depend on narrow staple-based subsistence agriculture. The population projected means the density will be 42 people per km2, putting more pressure on limited land available. When that happens, PNG will not be prepared to mitigate, be resilient and adapt because of poor infrastructure, no development plans and lack of post-harvest technologies for loss management of the staples, most of which are root and tuber crops.


2019 ◽  
Vol 1 (1) ◽  
pp. 1-10
Author(s):  
Hendri

Indonesia is one of the countries with the largest tropical rainforest area, especially in Papua Island together with Papua New Guinea accounted the third largest tropical rainforests in the world, after the Amazon (336.7 million ha) and Congo (181.3 million ha). The total tropical rainforest area is 68.7 million ha contained Papua about 57% (39.2 million ha) and 43% (29.5 million ha) Papua New Guinea. Unfortunately, deforestation rates in the few decades increased from 1.39 million ha in the period 1985 – 1997 and 0.6 million ha in the period 2000 – 2005. The direct impact of rapid LULUCF (Land Use, Land Use Change & Forestry) changes since 1980`s has accumulated critical land by 29.0% of forest area in West Papua and 31.4% of forest area in Papua. Climate change affected in Papua region due to rapid amount GHG`s emissions into the atmosphere by increasing average temperature about 0.7oC, minimum temperature (0.7oC) and maximum temperature (1.2oC) during period 1996 – 2005. Other effects of climate change the decreased rainfall up to 26% per month in the last decade, 50% reduced total agriculture productivity, expanded malaria diseases, and increased extreme condition such as drought with intensity of forest fire detected in Sorong due to inter-annual climate variability events, such as the El-Niño event and flood due to the La-Niña event. However, it is difficult task to build mitigation and adaptation planning in the region or local scale due to the lack information, the lack human resources, and local topography and phenomena. In that case, so far, no study has been conducted in Papua region to build mitigation and adaptation planning for carbon management. Therefore, this study tries to promote a carbon management program for help local government to solve forest environmental problems consideration of climate change.


Radiocarbon ◽  
2004 ◽  
Vol 46 (3) ◽  
pp. 1127-1160 ◽  
Author(s):  
K B Cutler ◽  
S C Gray ◽  
G S Burr ◽  
R L Edwards ◽  
F W Taylor ◽  
...  

We calibrated portions of the radiocarbon time scale with combined 230Th, 231Pa, 14C measurements of corals collected from Espiritu Santo, Vanuatu and the Huon Peninsula, Papua New Guinea. The new data map 14C variations ranging from the current limit of the tree-ring calibration [11,900 calendar years before present (cal BP), Kromer and Spurk 1998, now updated to 12,400 cal B P, see Kromer et al., this issue], to the 14C-dating limit of 50,000 cal BP, with detailed structure between 14 to 16 cal kyr BP and 19 to 24 cal kyr BP. Samples older than 25,000 cal BP were analyzed with high-precision 231Pa dating methods (Pickett et al. 1994; Edwards et al. 1997) as a rigorous second check on the accuracy of the 230Th ages. These are the first coral calibration data to receive this additional check, adding confidence to the age data forming the older portion of the calibration. Our results, in general, show that the offset between calibrated and 14C ages generally increases with age until about 28,000 cal BP, when the recorded 14C age is nearly 6800 yr too young. The gap between ages before this time is less; at 50,000 cal BP, the recorded 14C age is 4600 yr too young. Two major 14C-age plateaus result from a 130 drop in Δ14C between 14–15 cal kyr BP and a 700 drop in Δ14C between 22–25 cal kyr BP. In addition, a large atmospheric Δ14C excursion to values over 1000 occurs at 28 cal kyr BP. Between 20 and 10 cal kyr BP, a component of atmospheric Δ14C anti-correlates with Greenland ice δ18O, indicating that some portion of the variability in atmospheric Δ14C is related to climate change, most likely through climate-related changes in the carbon cycle. Furthermore, the 28-kyr excursion occurs at about the time of significant climate shifts. Taken as a whole, our data indicate that in addition to a terrestrial magnetic field, factors related to climate change have affected the history of atmospheric 14C.


Sign in / Sign up

Export Citation Format

Share Document