scholarly journals On the strong metric dimension of the strong products of graphs

2015 ◽  
Vol 13 (1) ◽  
Author(s):  
Dorota Kuziak ◽  
Ismael G. Yero ◽  
Juan A. Rodríguez-Velázquez

AbstractLet G be a connected graph. A vertex w ∈ V.G/ strongly resolves two vertices u,v ∈ V.G/ if there exists some shortest u-w path containing v or some shortest v-w path containing u. A set S of vertices is a strong resolving set for G if every pair of vertices of G is strongly resolved by some vertex of S. The smallest cardinality of a strong resolving set for G is called the strong metric dimension of G. It is well known that the problem of computing this invariant is NP-hard. In this paper we study the problem of finding exact values or sharp bounds for the strong metric dimension of strong product graphs and express these in terms of invariants of the factor graphs.

2015 ◽  
Vol 31 (2) ◽  
pp. 261-268
Author(s):  
JUAN A. RODRIGUEZ-VELAZQUEZ ◽  
◽  
DOROTA KUZIAK ◽  
ISMAEL G. YERO ◽  
JOSE M. SIGARRETA ◽  
...  

For an ordered subset S = {s1, s2, . . . sk} of vertices in a connected graph G, the metric representation of a vertex u with respect to the set S is the k-vector r(u|S) = (dG(v, s1), dG(v, s2), . . . , dG(v, sk)), where dG(x, y) represents the distance between the vertices x and y. The set S is a metric generator for G if every two different vertices of G have distinct metric representations with respect to S. A minimum metric generator is called a metric basis for G and its cardinality, dim(G), the metric dimension of G. It is well known that the problem of finding the metric dimension of a graph is NP-Hard. In this paper we obtain closed formulae and tight bounds for the metric dimension of strong product graphs.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Jia-Bao Liu ◽  
Ali Zafari

Let G be a finite, connected graph of order of, at least, 2 with vertex set VG and edge set EG. A set S of vertices of the graph G is a doubly resolving set for G if every two distinct vertices of G are doubly resolved by some two vertices of S. The minimal doubly resolving set of vertices of graph G is a doubly resolving set with minimum cardinality and is denoted by ψG. In this paper, first, we construct a class of graphs of order 2n+Σr=1k−2nmr, denoted by LSGn,m,k, and call these graphs as the layer Sun graphs with parameters n, m, and k. Moreover, we compute minimal doubly resolving sets and the strong metric dimension of the layer Sun graph LSGn,m,k and the line graph of the layer Sun graph LSGn,m,k.


Mathematics ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 1266
Author(s):  
Dorota Kuziak

A vertex w of a connected graph G strongly resolves two distinct vertices u,v∈V(G), if there is a shortest u,w path containing v, or a shortest v,w path containing u. A set S of vertices of G is a strong resolving set for G if every two distinct vertices of G are strongly resolved by a vertex of S. The smallest cardinality of a strong resolving set for G is called the strong metric dimension of G. To study the strong metric dimension of graphs, a very important role is played by a structure of graphs called the strong resolving graph In this work, we obtain the strong metric dimension of some families of cactus graphs, and along the way, we give several structural properties of the strong resolving graphs of the studied families of cactus graphs.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Jia-Bao Liu ◽  
Ali Zafari ◽  
Hassan Zarei

Let Γ be a simple connected undirected graph with vertex set VΓ and edge set EΓ. The metric dimension of a graph Γ is the least number of vertices in a set with the property that the list of distances from any vertex to those in the set uniquely identifies that vertex. For an ordered subset W=w1,w2,…,wk of vertices in a graph Γ and a vertex v of Γ, the metric representation of v with respect to W is the k-vector rvW=dv,w1,dv,w2,…,dv,wk. If every pair of distinct vertices of Γ have different metric representations, then the ordered set W is called a resolving set of Γ. It is known that the problem of computing this invariant is NP-hard. In this paper, we consider the problem of determining the cardinality ψΓ of minimal doubly resolving sets of Γ and the strong metric dimension for the jellyfish graph JFGn,m and the cocktail party graph CPk+1.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Bin Yang ◽  
Muhammad Rafiullah ◽  
Hafiz Muhammad Afzal Siddiqui ◽  
Sarfraz Ahmad

Let G=V,E be a simple connected graph, w∈V be a vertex, and e=uv∈E be an edge. The distance between the vertex w and edge e is given by de,w=mindw,u,dw,v, A vertex w distinguishes two edges e1, e2∈E if dw,e1≠dw,e2. A set S is said to be resolving if every pair of edges of G is distinguished by some vertices of S. A resolving set with minimum cardinality is the basis for G, and this cardinality is the edge metric dimension of G, denoted by edimG. It has already been proved that the edge metric dimension is an NP-hard problem. The main objective of this article is to study the edge metric dimension of some families of wheel-related graphs and prove that these families have unbounded edge metric dimension. Moreover, the results are compared with the metric dimension of these graphs.


Author(s):  
Liliek Susilowati ◽  
Imroatus Sa’adah ◽  
Utami Dyah Purwati

Some concepts in graph theory are resolving set, dominating set, and dominant metric dimension. A resolving set of a connected graph [Formula: see text] is the ordered set [Formula: see text] such that every pair of two vertices [Formula: see text] has the different representation with respect to [Formula: see text]. A Dominating set of [Formula: see text] is the subset [Formula: see text] such that for every vertex [Formula: see text] in [Formula: see text] is adjacent to at least one vertex in [Formula: see text]. A dominant resolving set of [Formula: see text] is an ordered set [Formula: see text] such that [Formula: see text] is a resolving set and a dominating set of [Formula: see text]. The minimum cardinality of a dominant resolving set is called a dominant metric dimension of [Formula: see text], denoted by [Formula: see text]. In this paper, we determine the dominant metric dimension of the joint product graphs.


2017 ◽  
Vol 14 (1) ◽  
pp. 354-358 ◽  
Author(s):  
Sathish Krishnan ◽  
Bharati Rajan ◽  
Muhammad Imran

Let G(V, E) be a connected graph. A vertex w strongly resolves a pair of vertices u,v in V if there exists some shortestu–w path containing V or some shortest v–w path containing u. A set w ⊂ V of vertices is called a strong resolving set for G if every pair of vertices of V\W is strongly resolved by some vertex of w . A strong resolving set of minimum cardinality is called a strong metric basis and this cardinality is called the strong metric dimension of G. The strong metric dimension problem is to find a strong metric basis in a graph. In this paper we investigate the strong metric dimension problem for certain nanostructures.


Mathematics ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1383
Author(s):  
Ali H. Alkhaldi ◽  
Muhammad Kamran Aslam ◽  
Muhammad Javaid ◽  
Abdulaziz Mohammed Alanazi

Metric dimension of networks is a distance based parameter that is used to rectify the distance related problems in robotics, navigation and chemical strata. The fractional metric dimension is the latest developed weighted version of metric dimension and a generalization of the concept of local fractional metric dimension. Computing the fractional metric dimension for all the connected networks is an NP-hard problem. In this note, we find the sharp bounds of the fractional metric dimensions of all the connected networks under certain conditions. Moreover, we have calculated the fractional metric dimension of grid-like networks, called triangular and polaroid grids, with the aid of the aforementioned criteria. Moreover, we analyse the bounded and unboundedness of the fractional metric dimensions of the aforesaid networks with the help of 2D as well as 3D plots.


2019 ◽  
Vol 11 (2) ◽  
pp. 418-421
Author(s):  
B.S. Ponomarchuk

Let $(X,d)$ be a metric space. A non-empty subset $A$ of the set $X$ is called resolving set of the metric space $(X,d)$ if for two arbitrary not equal points $u,v$ from $X$ there exists an element $a$ from $A$, such that $d(u,a) \neq d(v,a)$. The smallest of cardinalities of resolving subsets of the set $X$ is called the metric dimension $md(X)$ of the metric space $(X,d)$. In general, finding the metric dimension is an NP-hard problem. In this paper, metric dimension for metric transform and wreath product of metric spaces are provided. It is shown that the metric dimension of an arbitrary metric space is equal to the metric dimension of its metric transform.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Zafar Hussain ◽  
Mobeen Munir ◽  
Ashfaq Ahmad ◽  
Maqbool Chaudhary ◽  
Junaid Alam Khan ◽  
...  

AbstractResolving set and metric basis has become an integral part in combinatorial chemistry and molecular topology. It has a lot of applications in computer, chemistry, pharmacy and mathematical disciplines. A subset S of the vertex set V of a connected graph G resolves G if all vertices of G have different representations with respect to S. A metric basis for G is a resolving set having minimum cardinal number and this cardinal number is called the metric dimension of G. In present work, we find a metric basis and also metric dimension of 1-pentagonal carbon nanocones. We conclude that only three vertices are minimal requirement for the unique identification of all vertices in this network.


Sign in / Sign up

Export Citation Format

Share Document