scholarly journals The Strong Resolving Graph and the Strong Metric Dimension of Cactus Graphs

Mathematics ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 1266
Author(s):  
Dorota Kuziak

A vertex w of a connected graph G strongly resolves two distinct vertices u,v∈V(G), if there is a shortest u,w path containing v, or a shortest v,w path containing u. A set S of vertices of G is a strong resolving set for G if every two distinct vertices of G are strongly resolved by a vertex of S. The smallest cardinality of a strong resolving set for G is called the strong metric dimension of G. To study the strong metric dimension of graphs, a very important role is played by a structure of graphs called the strong resolving graph In this work, we obtain the strong metric dimension of some families of cactus graphs, and along the way, we give several structural properties of the strong resolving graphs of the studied families of cactus graphs.

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Jia-Bao Liu ◽  
Ali Zafari

Let G be a finite, connected graph of order of, at least, 2 with vertex set VG and edge set EG. A set S of vertices of the graph G is a doubly resolving set for G if every two distinct vertices of G are doubly resolved by some two vertices of S. The minimal doubly resolving set of vertices of graph G is a doubly resolving set with minimum cardinality and is denoted by ψG. In this paper, first, we construct a class of graphs of order 2n+Σr=1k−2nmr, denoted by LSGn,m,k, and call these graphs as the layer Sun graphs with parameters n, m, and k. Moreover, we compute minimal doubly resolving sets and the strong metric dimension of the layer Sun graph LSGn,m,k and the line graph of the layer Sun graph LSGn,m,k.


2015 ◽  
Vol 13 (1) ◽  
Author(s):  
Dorota Kuziak ◽  
Ismael G. Yero ◽  
Juan A. Rodríguez-Velázquez

AbstractLet G be a connected graph. A vertex w ∈ V.G/ strongly resolves two vertices u,v ∈ V.G/ if there exists some shortest u-w path containing v or some shortest v-w path containing u. A set S of vertices is a strong resolving set for G if every pair of vertices of G is strongly resolved by some vertex of S. The smallest cardinality of a strong resolving set for G is called the strong metric dimension of G. It is well known that the problem of computing this invariant is NP-hard. In this paper we study the problem of finding exact values or sharp bounds for the strong metric dimension of strong product graphs and express these in terms of invariants of the factor graphs.


2017 ◽  
Vol 14 (1) ◽  
pp. 354-358 ◽  
Author(s):  
Sathish Krishnan ◽  
Bharati Rajan ◽  
Muhammad Imran

Let G(V, E) be a connected graph. A vertex w strongly resolves a pair of vertices u,v in V if there exists some shortestu–w path containing V or some shortest v–w path containing u. A set w ⊂ V of vertices is called a strong resolving set for G if every pair of vertices of V\W is strongly resolved by some vertex of w . A strong resolving set of minimum cardinality is called a strong metric basis and this cardinality is called the strong metric dimension of G. The strong metric dimension problem is to find a strong metric basis in a graph. In this paper we investigate the strong metric dimension problem for certain nanostructures.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Zafar Hussain ◽  
Mobeen Munir ◽  
Ashfaq Ahmad ◽  
Maqbool Chaudhary ◽  
Junaid Alam Khan ◽  
...  

AbstractResolving set and metric basis has become an integral part in combinatorial chemistry and molecular topology. It has a lot of applications in computer, chemistry, pharmacy and mathematical disciplines. A subset S of the vertex set V of a connected graph G resolves G if all vertices of G have different representations with respect to S. A metric basis for G is a resolving set having minimum cardinal number and this cardinal number is called the metric dimension of G. In present work, we find a metric basis and also metric dimension of 1-pentagonal carbon nanocones. We conclude that only three vertices are minimal requirement for the unique identification of all vertices in this network.


2018 ◽  
Vol 10 (01) ◽  
pp. 1850008
Author(s):  
Muhammad Imran ◽  
A. Q. Baig ◽  
Saima Rashid ◽  
Andrea Semaničová-Feňovčíková

Let [Formula: see text] be a connected graph and [Formula: see text] be the distance between the vertices [Formula: see text] and [Formula: see text] in [Formula: see text]. The diameter of [Formula: see text] is defined as [Formula: see text] and is denoted by [Formula: see text]. A subset of vertices [Formula: see text] is called a resolving set for [Formula: see text] if for every two distinct vertices [Formula: see text], there is a vertex [Formula: see text], [Formula: see text], such that [Formula: see text]. A resolving set containing the minimum number of vertices is called a metric basis for [Formula: see text] and the number of vertices in a metric basis is its metric dimension, denoted by [Formula: see text]. Metric dimension is a generalization of affine dimension to arbitrary metric spaces (provided a resolving set exists). Let [Formula: see text] be a family of connected graphs [Formula: see text] depending on [Formula: see text] as follows: the order [Formula: see text] and [Formula: see text]. If there exists a constant [Formula: see text] such that [Formula: see text] for every [Formula: see text] then we shall say that [Formula: see text] has bounded metric dimension, otherwise [Formula: see text] has unbounded metric dimension. If all graphs in [Formula: see text] have the same metric dimension, then [Formula: see text] is called a family of graphs with constant metric dimension. In this paper, we study the metric properties of an infinite class of circulant graphs with three generators denoted by [Formula: see text] for any positive integer [Formula: see text] and when [Formula: see text]. We compute the diameter and determine the exact value of the metric dimension of these circulant graphs.


Mathematics ◽  
2018 ◽  
Vol 6 (10) ◽  
pp. 191 ◽  
Author(s):  
Shahid Imran ◽  
Muhammad Siddiqui ◽  
Muhammad Imran ◽  
Muhammad Hussain

Let G = (V, E) be a connected graph and d(x, y) be the distance between the vertices x and y in G. A set of vertices W resolves a graph G if every vertex is uniquely determined by its vector of distances to the vertices in W. A metric dimension of G is the minimum cardinality of a resolving set of G and is denoted by dim(G). In this paper, Cycle, Path, Harary graphs and their rooted product as well as their connectivity are studied and their metric dimension is calculated. It is proven that metric dimension of some graphs is unbounded while the other graphs are constant, having three or four dimensions in certain cases.


Symmetry ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 300 ◽  
Author(s):  
Zafar Hussain ◽  
Mobeen Munir ◽  
Maqbool Chaudhary ◽  
Shin Kang

Concepts of resolving set and metric basis has enjoyed a lot of success because of multi-purpose applications both in computer and mathematical sciences. For a connected graph G(V,E) a subset W of V(G) is a resolving set for G if every two vertices of G have distinct representations with respect to W. A resolving set of minimum cardinality is called a metric basis for graph G and this minimum cardinality is known as metric dimension of G. Boron nanotubes with different lattice structures, radii and chirality’s have attracted attention due to their transport properties, electronic structure and structural stability. In the present article, we compute the metric dimension and metric basis of 2D lattices of alpha-boron nanotubes.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Tanveer Iqbal ◽  
Muhammad Naeem Azhar ◽  
Syed Ahtsham Ul Haq Bokhary

In this paper, a new concept k -size edge resolving set for a connected graph G in the context of resolvability of graphs is defined. Some properties and realizable results on k -size edge resolvability of graphs are studied. The existence of this new parameter in different graphs is investigated, and the k -size edge metric dimension of path, cycle, and complete bipartite graph is computed. It is shown that these families have unbounded k -size edge metric dimension. Furthermore, the k-size edge metric dimension of the graphs Pm □ Pn, Pm □ Cn for m, n ≥ 3 and the generalized Petersen graph is determined. It is shown that these families of graphs have constant k -size edge metric dimension.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Jianxin Wei ◽  
Syed Ahtsham Ul Haq Bokhary ◽  
Ghulam Abbas ◽  
Muhammad Imran

Circulant networks form a very important and widely explored class of graphs due to their interesting and wide-range applications in networking, facility location problems, and their symmetric properties. A resolving set is a subset of vertices of a connected graph such that each vertex of the graph is determined uniquely by its distances to that set. A resolving set of the graph that has the minimum cardinality is called the basis of the graph, and the number of elements in the basis is called the metric dimension of the graph. In this paper, the metric dimension is computed for the graph Gn1,k constructed from the circulant graph Cn1,k by subdividing its edges. We have shown that, for k=2, Gn1,k has an unbounded metric dimension, and for k=3 and 4, Gn1,k has a bounded metric dimension.


2021 ◽  
Vol 9 ◽  
Author(s):  
Sunny Kumar Sharma ◽  
Hassan Raza ◽  
Vijay Kumar Bhat

Minimum resolving sets (edge or vertex) have become an integral part of molecular topology and combinatorial chemistry. Resolving sets for a specific network provide crucial information required for the identification of each item contained in the network, uniquely. The distance between an edge e = cz and a vertex u is defined by d(e, u) = min{d(c, u), d(z, u)}. If d(e1, u) ≠ d(e2, u), then we say that the vertex u resolves (distinguishes) two edges e1 and e2 in a connected graph G. A subset of vertices RE in G is said to be an edge resolving set for G, if for every two distinct edges e1 and e2 in G we have d(e1, u) ≠ d(e2, u) for at least one vertex u ∈ RE. An edge metric basis for G is an edge resolving set with minimum cardinality and this cardinality is called the edge metric dimension edim(G) of G. In this article, we determine the edge metric dimension of one-pentagonal carbon nanocone (1-PCNC). We also show that the edge resolving set for 1-PCNC is independent.


Sign in / Sign up

Export Citation Format

Share Document