scholarly journals Metric dimension of metric transform and wreath product

2019 ◽  
Vol 11 (2) ◽  
pp. 418-421
Author(s):  
B.S. Ponomarchuk

Let $(X,d)$ be a metric space. A non-empty subset $A$ of the set $X$ is called resolving set of the metric space $(X,d)$ if for two arbitrary not equal points $u,v$ from $X$ there exists an element $a$ from $A$, such that $d(u,a) \neq d(v,a)$. The smallest of cardinalities of resolving subsets of the set $X$ is called the metric dimension $md(X)$ of the metric space $(X,d)$. In general, finding the metric dimension is an NP-hard problem. In this paper, metric dimension for metric transform and wreath product of metric spaces are provided. It is shown that the metric dimension of an arbitrary metric space is equal to the metric dimension of its metric transform.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Bin Yang ◽  
Muhammad Rafiullah ◽  
Hafiz Muhammad Afzal Siddiqui ◽  
Sarfraz Ahmad

Let G=V,E be a simple connected graph, w∈V be a vertex, and e=uv∈E be an edge. The distance between the vertex w and edge e is given by de,w=mindw,u,dw,v, A vertex w distinguishes two edges e1, e2∈E if dw,e1≠dw,e2. A set S is said to be resolving if every pair of edges of G is distinguished by some vertices of S. A resolving set with minimum cardinality is the basis for G, and this cardinality is the edge metric dimension of G, denoted by edimG. It has already been proved that the edge metric dimension is an NP-hard problem. The main objective of this article is to study the edge metric dimension of some families of wheel-related graphs and prove that these families have unbounded edge metric dimension. Moreover, the results are compared with the metric dimension of these graphs.



Mathematics ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1383
Author(s):  
Ali H. Alkhaldi ◽  
Muhammad Kamran Aslam ◽  
Muhammad Javaid ◽  
Abdulaziz Mohammed Alanazi

Metric dimension of networks is a distance based parameter that is used to rectify the distance related problems in robotics, navigation and chemical strata. The fractional metric dimension is the latest developed weighted version of metric dimension and a generalization of the concept of local fractional metric dimension. Computing the fractional metric dimension for all the connected networks is an NP-hard problem. In this note, we find the sharp bounds of the fractional metric dimensions of all the connected networks under certain conditions. Moreover, we have calculated the fractional metric dimension of grid-like networks, called triangular and polaroid grids, with the aid of the aforementioned criteria. Moreover, we analyse the bounded and unboundedness of the fractional metric dimensions of the aforesaid networks with the help of 2D as well as 3D plots.



Author(s):  
B Ponomarchuk

For an arbitrary metric space (X, d) subset A \subset X is called resolving if for any two points x \ne y \in X there exists point a in subset A for which following inequality holds d(a, x) \ne d(a, y). Cardinality of the subset A with the least amount of points is called metric dimension. In general, the problem of finding metric dimension of a metric space is NP–hard [1]. In this paper metric dimension for particular constructs of metric spaces is provided. In particular, it is fully characterized metric dimension for the direct sum of metric spaces and shown some properties of the metric dimension of direct product.



Queue ◽  
2020 ◽  
Vol 18 (6) ◽  
pp. 37-51
Author(s):  
Terence Kelly

Expectations run high for software that makes real-world decisions, particularly when money hangs in the balance. This third episode of the Drill Bits column shows how well-designed software can effectively create wealth by optimizing gains from trade in combinatorial auctions. We'll unveil a deep connection between auctions and a classic textbook problem, we'll see that clearing an auction resembles a high-stakes mutant Tetris, we'll learn to stop worrying and love an NP-hard problem that's far from intractable in practice, and we'll contrast the deliberative business of combinatorial auctions with the near-real-time hustle of high-frequency trading. The example software that accompanies this installment of Drill Bits implements two algorithms that clear combinatorial auctions.



2018 ◽  
Vol 2018 ◽  
pp. 1-7
Author(s):  
Ke Zhang ◽  
Haixing Zhao ◽  
Zhonglin Ye ◽  
Lixin Dong

The reliability polynomial R(S,p) of a finite graph or hypergraph S=(V,E) gives the probability that the operational edges or hyperedges of S induce a connected spanning subgraph or subhypergraph, respectively, assuming that all (hyper)edges of S fail independently with an identical probability q=1-p. In this paper, we investigate the probability that the hyperedges of a hypergraph with randomly failing hyperedges induce a connected spanning subhypergraph. The computation of the reliability for (hyper)graphs is an NP-hard problem. We provide recurrence relations for the reliability of r-uniform complete hypergraphs with hyperedge failure. Consequently, we determine and calculate the number of connected spanning subhypergraphs with given size in the r-uniform complete hypergraphs.



2020 ◽  
Author(s):  
Shalin Shah

<p>A clique in a graph is a set of vertices that are all directly connected</p><p>to each other i.e. a complete sub-graph. A clique of the largest size is</p><p>called a maximum clique. Finding the maximum clique in a graph is an</p><p>NP-hard problem and it cannot be solved by an approximation algorithm</p><p>that returns a solution within a constant factor of the optimum. In this</p><p>work, we present a simple and very fast randomized algorithm for the</p><p>maximum clique problem. We also provide Java code of the algorithm</p><p>in our git repository. Results show that the algorithm is able to find</p><p>reasonably good solutions to some randomly chosen DIMACS benchmark</p><p>graphs. Rather than aiming for optimality, we aim to find good solutions</p><p>very fast.</p>



2020 ◽  
Author(s):  
Shalin Shah

<p>A clique in a graph is a set of vertices that are all directly connected</p><p>to each other i.e. a complete sub-graph. A clique of the largest size is</p><p>called a maximum clique. Finding the maximum clique in a graph is an</p><p>NP-hard problem and it cannot be solved by an approximation algorithm</p><p>that returns a solution within a constant factor of the optimum. In this</p><p>work, we present a simple and very fast randomized algorithm for the</p><p>maximum clique problem. We also provide Java code of the algorithm</p><p>in our git repository. Results show that the algorithm is able to find</p><p>reasonably good solutions to some randomly chosen DIMACS benchmark</p><p>graphs. Rather than aiming for optimality, we aim to find good solutions</p><p>very fast.</p>



2019 ◽  
Vol 17 (4) ◽  
pp. 71-93 ◽  
Author(s):  
Marcelo de Oliveira Costa Machado ◽  
Eduardo Barrére ◽  
Jairo Souza

Adaptive curriculum sequencing (ACS) is still a challenge in the adaptive learning field. ACS is a NP-hard problem especially considering the several constraints of the student and the learning material when selecting a sequence from repositories where several sequences could be chosen. Therefore, this has stimulated several researchers to use evolutionary approaches in the search for satisfactory solutions. This work explores the use of an adaptation of the prey-predator algorithm for the ACS problem. Pedagogical experiments with a real student dataset and convergence experiments with a synthetic dataset have shown that the proposed solution is suitable for the problem, although it is a solution not yet explored in the adaptive learning literature.



2015 ◽  
Vol 23 (4) ◽  
pp. 1092-1106 ◽  
Author(s):  
Marcello Caleffi ◽  
Ian F. Akyildiz ◽  
Luigi Paura


2018 ◽  
Vol 10 (01) ◽  
pp. 1850008
Author(s):  
Muhammad Imran ◽  
A. Q. Baig ◽  
Saima Rashid ◽  
Andrea Semaničová-Feňovčíková

Let [Formula: see text] be a connected graph and [Formula: see text] be the distance between the vertices [Formula: see text] and [Formula: see text] in [Formula: see text]. The diameter of [Formula: see text] is defined as [Formula: see text] and is denoted by [Formula: see text]. A subset of vertices [Formula: see text] is called a resolving set for [Formula: see text] if for every two distinct vertices [Formula: see text], there is a vertex [Formula: see text], [Formula: see text], such that [Formula: see text]. A resolving set containing the minimum number of vertices is called a metric basis for [Formula: see text] and the number of vertices in a metric basis is its metric dimension, denoted by [Formula: see text]. Metric dimension is a generalization of affine dimension to arbitrary metric spaces (provided a resolving set exists). Let [Formula: see text] be a family of connected graphs [Formula: see text] depending on [Formula: see text] as follows: the order [Formula: see text] and [Formula: see text]. If there exists a constant [Formula: see text] such that [Formula: see text] for every [Formula: see text] then we shall say that [Formula: see text] has bounded metric dimension, otherwise [Formula: see text] has unbounded metric dimension. If all graphs in [Formula: see text] have the same metric dimension, then [Formula: see text] is called a family of graphs with constant metric dimension. In this paper, we study the metric properties of an infinite class of circulant graphs with three generators denoted by [Formula: see text] for any positive integer [Formula: see text] and when [Formula: see text]. We compute the diameter and determine the exact value of the metric dimension of these circulant graphs.



Sign in / Sign up

Export Citation Format

Share Document