scholarly journals Some properties of pre-quasi operator ideal of type generalized Cesáro sequence space defined by weighted means

2019 ◽  
Vol 17 (1) ◽  
pp. 1703-1715 ◽  
Author(s):  
Awad A. Bakery ◽  
Mustafa M. Mohammed

Abstract Let E be a generalized Cesáro sequence space defined by weighted means and by using s-numbers of operators from a Banach space X into a Banach space Y. We give the sufficient (not necessary) conditions on E such that the components $$\begin{array}{} \displaystyle S_{E}(X, Y):=\Big\{T\in L(X, Y):((s_{n}(T))_{n=0}^{\infty}\in E\Big\}, \end{array}$$ of the class SE form pre-quasi operator ideal, the class of all finite rank operators are dense in the Banach pre-quasi ideal SE, the pre-quasi operator ideal formed by the sequence of approximation numbers is strictly contained for different weights and powers, the pre-quasi Banach Operator ideal formed by the sequence of approximation numbers is small and the pre-quasi Banach operator ideal constructed by s-numbers is simple Banach space. Finally the pre-quasi operator ideal formed by the sequence of s-numbers and this sequence space is strictly contained in the class of all bounded linear operators, whose sequence of eigenvalues belongs to this sequence space.

2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Awad A. Bakery ◽  
Afaf R. Abou Elmatty

Let E be a weighted Nakano sequence space or generalized Cesáro sequence space defined by weighted mean and by using s−numbers of operators from a Banach space X into a Banach space Y. We give the sufficient (not necessary) conditions on E such that the components SEX,Y≔T∈LX,Y:snTn=0∞∈E of the class SE form pre-quasi operator ideal, the class of all finite rank operators are dense in the Banach pre-quasi ideal SE, the pre-quasi operator ideal formed by the sequence of approximation numbers is strictly contained for different weights and powers, the pre-quasi Banach Operator ideal formed by the sequence of approximation numbers is small, and finally, the pre-quasi Banach operator ideal constructed by s−numbers is simple Banach space.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Awad A. Bakery

The aim of this paper is to give the sufficient conditions on the sequence spaceCesθ,pdefined in Lim (1977) such that the class of all bounded linear operators between any arbitrary Banach spaces withnth approximation numbers of the bounded linear operators inCesθ,pform an operator ideal.


Filomat ◽  
2014 ◽  
Vol 28 (8) ◽  
pp. 1641-1652 ◽  
Author(s):  
M.H.M. Rashid

An operator T acting on a Banach space X obeys property (R) if ?0a(T) = E0(T), where ?0a(T) is the set of all left poles of T of finite rank and E0(T) is the set of all isolated eigenvalues of T of finite multiplicity. In this paper we introduce and study two new properties (S) and (gS) in connection with Weyl type theorems. Among other things, we prove that if T is a bounded linear operator acting on a Banach space, then T satisfies property (R) if and only if T satisfies property (S) and ?0(T) = ?0a(T), where ?0(T) is the set of poles of finite rank. Also we show if T satisfies Weyl theorem, then T satisfies property (S). Analogous results for property (gS) are given. Moreover, these properties are also studied in the frame of polaroid operator.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Awad A. Bakery ◽  
OM Kalthum S. K. Mohamed

In this article, the necessary conditions on s-type Orlicz generalized difference sequence space to generate an operator ideal have been examined. Therefore, the s-type Orlicz generalized difference sequence space which fails to generate an operator ideal has been shown. We investigate the sufficient conditions on this sequence space to be premodular Banach special space of sequences, and the constructed pre-quasi operator ideal becomes small, simple, closed, Banach space and has eigenvalues identical with its s-numbers.


1990 ◽  
Vol 32 (3) ◽  
pp. 273-276 ◽  
Author(s):  
Muneo Chō

In this paper we shall examine the relationship between the numerical ranges and the spectra for semi-normal operators on uniformly smooth spaces.Let X be a complex Banach space. We denote by X* the dual space of X and by B(X) the space of all bounded linear operators on X. A linear functional F on B(X) is called state if ∥F∥ = F(I) = 1. When x ε X with ∥x∥ = 1, we denoteD(x) = {f ε X*:∥f∥ = f(x) = l}.


Author(s):  
Hans-Olav Tylli

Special operator-ideal approximation properties (APs) of Banach spaces are employed to solve the problem of whether the distance functions S ↦ dist(S*, I(F*, E*)) and S ↦ dist(S, I*(E, F)) are uniformly comparable in each space L(E, F) of bounded linear operators. Here, I*(E, F) = {S ∈ L(E, F) : S* ∈ I(F*, E*)} stands for the adjoint ideal of the closed operator ideal I for Banach spaces E and F. Counterexamples are obtained for many classical surjective or injective Banach operator ideals I by solving two resulting ‘asymmetry’ problems for these operator-ideal APs.


2016 ◽  
Vol 160 (3) ◽  
pp. 413-421 ◽  
Author(s):  
TOMASZ KANIA ◽  
NIELS JAKOB LAUSTSEN

AbstractA recent result of Leung (Proceedings of the American Mathematical Society, 2015) states that the Banach algebra ℬ(X) of bounded, linear operators on the Banach space X = (⊕n∈$\mathbb{N}$ ℓ∞n)ℓ1 contains a unique maximal ideal. We show that the same conclusion holds true for the Banach spaces X = (⊕n∈$\mathbb{N}$ ℓ∞n)ℓp and X = (⊕n∈$\mathbb{N}$ ℓ1n)ℓp whenever p ∈ (1, ∞).


2007 ◽  
Vol 49 (1) ◽  
pp. 145-154
Author(s):  
BRUCE A. BARNES

Abstract.LetTbe a bounded linear operator on a Banach spaceW, assumeWandYare in normed duality, and assume thatThas adjointT†relative toY. In this paper, conditions are given that imply that for all λ≠0, λ−Tand λ −T†maintain important standard operator relationships. For example, under the conditions given, λ −Thas closed range if, and only if, λ −T†has closed range.These general results are shown to apply to certain classes of integral operators acting on spaces of continuous functions.


2004 ◽  
Vol 69 (3) ◽  
pp. 383-394
Author(s):  
M. Janfada ◽  
A. Niknam

Let Hi(i = 1, 2, …, n), be closed operators in a Banach space X. The generalised initialvalue problem of the abstract Cauchy problem is studied. We show that the uniqueness of solution u: [0, T1] × [0, T2] × … × [0, Tn] → X of this n-abstract Cauchy problem is closely related to C0-n-parameter semigroups of bounded linear operators on X. Also as another application of C0-n-parameter semigroups, we prove that many n-parameter initial value problems cannot have a unique solution for some initial values.


1969 ◽  
Vol 21 ◽  
pp. 592-594 ◽  
Author(s):  
A. F. Ruston

1. In a recent paper (1) on meromorphic operators, Caradus introduced the class of bounded linear operators on a complex Banach space X. A bounded linear operator T is put in the class if and only if its spectrum consists of a finite number of poles of the resolvent of T. Equivalently, T is in if and only if it has a rational resolvent (8, p. 314).Some ten years ago (in May, 1957), I discovered a property of the class g which may be of interest in connection with Caradus' work, and is the subject of the present note.2. THEOREM. Let X be a complex Banach space. If T belongs to the class, and the linear operator S commutes with every bounded linear operator which commutes with T, then there is a polynomial p such that S = p(T).


Sign in / Sign up

Export Citation Format

Share Document