Positive solutions of a discrete nonlinear third-order three-point eigenvalue problem with sign-changing Green's function

2021 ◽  
Vol 19 (1) ◽  
pp. 990-1006
Author(s):  
Xueqin Cao ◽  
Chenghua Gao ◽  
Duihua Duan

Abstract In this paper, we discuss the existence of positive solutions to a discrete third-order three-point boundary value problem. Here, the weight function a ( t ) a\left(t) and the Green function G ( t , s ) G\left(t,s) both change their sign. Despite this, we also obtain several existence results of positive solutions by using the Guo-Krasnoselskii’s fixed-point theorem in a cone.

2012 ◽  
Vol 2012 ◽  
pp. 1-15
Author(s):  
Fatma Tokmak ◽  
Ilkay Yaslan Karaca

A four-functional fixed point theorem and a generalization of Leggett-Williams fixed point theorem are used, respectively, to investigate the existence of at least one positive solution and at least three positive solutions for third-order -point boundary value problem on time scales with an increasing homeomorphism and homomorphism, which generalizes the usual -Laplacian operator. In particular, the nonlinear term is allowed to change sign. As an application, we also give some examples to demonstrate our results.


2008 ◽  
Vol 2008 ◽  
pp. 1-16 ◽  
Author(s):  
Fuyi Xu

We study the following third-orderp-Laplacianm-point boundary value problems on time scales:(ϕp(uΔ∇))∇+a(t)f(t,u(t))=0,t∈[0,T]T,βu(0)−γuΔ(0)=0,u(T)=∑i=1m−2aiu(ξi),ϕp(uΔ∇(0))=∑i=1m−2biϕp(uΔ∇(ξi)), whereϕp(s)isp-Laplacian operator, that is,ϕp(s)=|s|p−2s,p>1,  ϕp−1=ϕq,1/p+1/q=1,  0<ξ1<⋯<ξm−2<ρ(T). We obtain the existence of positive solutions by using fixed-point theorem in cones. The conclusions in this paper essentially extend and improve the known results.


2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Hongjie Liu ◽  
Xiao Fu ◽  
Liangping Qi

We are concerned with the following nonlinear three-point fractional boundary value problem:D0+αut+λatft,ut=0,0<t<1,u0=0, andu1=βuη, where1<α≤2,0<β<1,0<η<1,D0+αis the standard Riemann-Liouville fractional derivative,at>0is continuous for0≤t≤1, andf≥0is continuous on0,1×0,∞. By using Krasnoesel'skii's fixed-point theorem and the corresponding Green function, we obtain some results for the existence of positive solutions. At the end of this paper, we give an example to illustrate our main results.


Mathematics ◽  
2019 ◽  
Vol 7 (6) ◽  
pp. 526
Author(s):  
Ehsan Pourhadi ◽  
Reza Saadati ◽  
Sotiris K. Ntouyas

Throughout this paper, via the Schauder fixed-point theorem, a generalization of Krasnoselskii’s fixed-point theorem in a cone, as well as some inequalities relevant to Green’s function, we study the existence of positive solutions of a nonlinear, fractional three-point boundary-value problem with a term of the first order derivative ( a C D α x ) ( t ) = f ( t , x ( t ) , x ′ ( t ) ) , a < t < b , 1 < α < 2 , x ( a ) = 0 , x ( b ) = μ x ( η ) , a < η < b , μ > λ , where λ = b − a η − a and a C D α denotes the Caputo’s fractional derivative, and f : [ a , b ] × R × R → R is a continuous function satisfying the certain conditions.


2003 ◽  
Vol 46 (2) ◽  
pp. 279-292 ◽  
Author(s):  
Ruyun Ma

AbstractIn this paper we consider the existence of positive solutions to the boundary-value problems\begin{align*} (p(t)u')'-q(t)u+\lambda f(t,u)\amp=0,\quad r\ltt\ltR, \\[2pt] au(r)-bp(r)u'(r)\amp=\sum^{m-2}_{i=1}\alpha_iu(\xi_i), \\ cu(R)+dp(R)u'(R)\amp=\sum^{m-2}_{i=1}\beta_iu(\xi_i), \end{align*}where $\lambda$ is a positive parameter, $a,b,c,d\in[0,\infty)$, $\xi_i\in(r,R)$, $\alpha_i,\beta_i\in[0,\infty)$ (for $i\in\{1,\dots m-2\}$) are given constants satisfying some suitable conditions. Our results extend some of the existing literature on superlinear semipositone problems. The proofs are based on the fixed-point theorem in cones.AMS 2000 Mathematics subject classification: Primary 34B10, 34B18, 34B15


2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Athasit Wongcharoen ◽  
Bashir Ahmad ◽  
Sotiris K. Ntouyas ◽  
Jessada Tariboon

We discuss the existence and uniqueness of solutions for the Langevin fractional differential equation and its inclusion counterpart involving the Hilfer fractional derivatives, supplemented with three-point boundary conditions by means of standard tools of the fixed-point theorems for single and multivalued functions. We make use of Banach’s fixed-point theorem to obtain the uniqueness result, while the nonlinear alternative of the Leray-Schauder type and Krasnoselskii’s fixed-point theorem are applied to obtain the existence results for the single-valued problem. Existence results for the convex and nonconvex valued cases of the inclusion problem are derived via the nonlinear alternative for Kakutani’s maps and Covitz and Nadler’s fixed-point theorem respectively. Examples illustrating the obtained results are also constructed. (2010) Mathematics Subject Classifications. This study is classified under the following classification codes: 26A33; 34A08; 34A60; and 34B15.


2009 ◽  
Vol 2009 ◽  
pp. 1-15
Author(s):  
Jian Liu ◽  
Fuyi Xu

We study the following third-orderm-point boundary value problems on time scales(φ(uΔ∇))∇+a(t)f(u(t))=0,t∈[0,T]T,u(0)=∑i=1m−2biu(ξi),uΔ(T)=0,φ(uΔ∇(0))=∑i=1m−2ciφ(uΔ∇(ξi)), whereφ:R→Ris an increasing homeomorphism and homomorphism andφ(0)=0,0<ξ1<⋯<ξm−2<ρ(T). We obtain the existence of three positive solutions by using fixed-point theorem in cones. The conclusions in this paper essentially extend and improve the known results.


2014 ◽  
Vol 0 (0) ◽  
Author(s):  
Mohammad Hussian Akrami ◽  
Gholam Hussian Erjaee

AbstractIn this article, we study the existence of positive solutions of a multi-point boundary value problem for some system of fractional differential equations. The fixed point theorem on cones will be applied to demonstrate the existence of solutions for this system. At the end, an example shows the application of the main results.


2014 ◽  
Vol 711 ◽  
pp. 303-307 ◽  
Author(s):  
Jie Gao

In this paper, by using Leggett-Williams fixed point theorem, we will study the existence of positive solutions for a class of multi-point boundary value problems of fractional differential equation on infinite interval.


Filomat ◽  
2021 ◽  
Vol 35 (5) ◽  
pp. 1629-1648
Author(s):  
Nguyen Long ◽  
Le Tri ◽  
Le Ngoc

In this paper, we consider a nonlinear differential system with initial and multi - point boundary conditions. The existence of solutions is proved by using the Banach contraction principle or the Krasnoselskii?s fixed point theorem. Furthermore, the existence of positive solutions is also obtained by applying the Guo-Krasnoselskii?s fixed point theorem in cones. As a consequence of the Guo-Krasnosellskii?s fixed point theorem, the multiplicity of positive solutions is established.


Sign in / Sign up

Export Citation Format

Share Document