scholarly journals Montgomery identity and Ostrowski-type inequalities via quantum calculus

2021 ◽  
Vol 19 (1) ◽  
pp. 1098-1109
Author(s):  
Thanin Sitthiwirattham ◽  
Muhammad Aamir Ali ◽  
Huseyin Budak ◽  
Mujahid Abbas ◽  
Saowaluck Chasreechai

Abstract In this paper, we prove a quantum version of Montgomery identity and prove some new Ostrowski-type inequalities for convex functions in the setting of quantum calculus. Moreover, we discuss several special cases of newly established inequalities and obtain different new and existing inequalities in the field of integral inequalities.

Symmetry ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 553 ◽  
Author(s):  
Miguel Vivas-Cortez ◽  
Artion Kashuri ◽  
Rozana Liko ◽  
Jorge E. Hernández Hernández

In this work the authors establish a new generalized version of Montgomery’s identity in the setting of quantum calculus. From this result, some new estimates of Ostrowski type inequalities are given using preinvex functions. Given the generality of preinvex functions, particular q —integral inequalities are established with appropriate choice of the parametric bifunction. Some new special cases from the main results are obtained and some known results are recaptured as well. At the end, a briefly conclusion is given.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Yi-Xia Li ◽  
Muhammad Aamir Ali ◽  
Hüseyin Budak ◽  
Mujahid Abbas ◽  
Yu-Ming Chu

AbstractIn this paper, we offer a new quantum integral identity, the result is then used to obtain some new estimates of Hermite–Hadamard inequalities for quantum integrals. The results presented in this paper are generalizations of the comparable results in the literature on Hermite–Hadamard inequalities. Several inequalities, such as the midpoint-like integral inequality, the Simpson-like integral inequality, the averaged midpoint–trapezoid-like integral inequality, and the trapezoid-like integral inequality, are obtained as special cases of our main results.


Mathematics ◽  
2021 ◽  
Vol 9 (15) ◽  
pp. 1753
Author(s):  
Saima Rashid ◽  
Aasma Khalid ◽  
Omar Bazighifan ◽  
Georgia Irina Oros

Integral inequalities for ℘-convex functions are established by using a generalised fractional integral operator based on Raina’s function. Hermite–Hadamard type inequality is presented for ℘-convex functions via generalised fractional integral operator. A novel parameterized auxiliary identity involving generalised fractional integral is proposed for differentiable mappings. By using auxiliary identity, we derive several Ostrowski type inequalities for functions whose absolute values are ℘-convex mappings. It is presented that the obtained outcomes exhibit classical convex and harmonically convex functions which have been verified using Riemann–Liouville fractional integral. Several generalisations and special cases are carried out to verify the robustness and efficiency of the suggested scheme in matrices and Fox–Wright generalised hypergeometric functions.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Huriye Kadakal

In this study, firstly we introduce a new concept called “strongly r-convex function.” After that we establish Hermite-Hadamard-like inequalities for this class of functions. Moreover, by using an integral identity together with some well known integral inequalities, we establish several new inequalities for n-times differentiable strongly r-convex functions. In special cases, the results obtained coincide with the well-known results in the literature.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Shanhe Wu ◽  
Muhammad Uzair Awan ◽  
Muhammad Ubaid Ullah ◽  
Sadia Talib ◽  
Artion Kashuri

In this paper, we study the properties of n -polynomial ζ -preinvex functions and establish some integral inequalities of Hermite-Hadamard type via this class of convex functions. Moreover, we discuss some special cases which provide a significant complement to the integral estimations of preinvex functions. Applications of the obtained results to the inequalities for special means are also considered.


2021 ◽  
Vol 40 (2) ◽  
pp. 481-504
Author(s):  
Artion Kashuri ◽  
Muhammad Raees ◽  
Matloob Anwar

In this paper, by applying the new and improved form of Hölder’s integral inequality called Hölder—Íşcan integral inequality three inequalities of Hermite—Hadamard and Hadamard integral type for (h, d)—convex functions have been established. Various special cases including classes for instance, h—convex, s—convex function of Breckner and Godunova—Levin—Dragomir and strong versions of the aforementioned types of convex functions have been identified. Some applications to error estimations of presented results have been analyzed. At the end, a briefly conclusion is given.


Author(s):  
Muhammad Aamir Ali ◽  
Hüseyin BUDAK ◽  
PRAVEEN AGARWAL ◽  
Yuming Chu

In this paper first we present some new identities by using the notions of quantum integrals and derivatives which allows us to obtain new quantum Simpson’s and quantum Newton’s type inequalities for differentiable convex functions by using the q_{x}-quantum integral and q^{y}-quantum integral. In particular, this paper generalises and extends previous results obtained by the various authors in the field of quantum and classical integral inequalities.


Mathematics ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 500 ◽  
Author(s):  
Gauhar Rahman ◽  
Kottakkaran Sooppy Nisar ◽  
Thabet Abdeljawad

Certain new inequalities for convex functions by utilizing the tempered fractional integral are established in this paper. We also established some new results by employing the connections between the tempered fractional integral with the (R-L) fractional integral. Several special cases of the main result are also presented. The obtained results are more in a general form as it reduced certain existing results of Dahmani (2012) and Liu et al. (2009) by employing some particular values of the parameters.


Author(s):  
Yu-Ming Chu ◽  
Sadia Talib ◽  
Erhan Set ◽  
Muhammad Uzair Awan ◽  
Muhammad Aslam Noor

AbstractThe main objective of this article is to establish a new post quantum version of Montgomery identity. Some estimates of associated post quantum bounds are also obtained. In order to obtain the main results of the article, we use the preinvexity property of the functions. Some special cases are also discussed in detail. Finally, we present some applications of the obtained results, which shows the significance of the discussed results.


Symmetry ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1402 ◽  
Author(s):  
Miguel J. Vivas-Cortez ◽  
Artion Kashuri ◽  
Rozana Liko ◽  
Jorge E. Hernández Hernández

In the present work, the Hermite–Hadamard inequality is established in the setting of quantum calculus for a generalized class of convex functions depending on three parameters: a number in ( 0 , 1 ] and two arbitrary real functions defined on [ 0 , 1 ] . From the proven results, various inequalities of the same type are deduced for other types of generalized convex functions and the methodology used reveals, in a sense, a symmetric mathematical phenomenon. In addition, the definition of dominated convex functions with respect to the generalized class of convex functions aforementioned is introduced, and some integral inequalities are established.


Sign in / Sign up

Export Citation Format

Share Document