scholarly journals Tempered Fractional Integral Inequalities for Convex Functions

Mathematics ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 500 ◽  
Author(s):  
Gauhar Rahman ◽  
Kottakkaran Sooppy Nisar ◽  
Thabet Abdeljawad

Certain new inequalities for convex functions by utilizing the tempered fractional integral are established in this paper. We also established some new results by employing the connections between the tempered fractional integral with the (R-L) fractional integral. Several special cases of the main result are also presented. The obtained results are more in a general form as it reduced certain existing results of Dahmani (2012) and Liu et al. (2009) by employing some particular values of the parameters.

Mathematics ◽  
2021 ◽  
Vol 9 (15) ◽  
pp. 1753
Author(s):  
Saima Rashid ◽  
Aasma Khalid ◽  
Omar Bazighifan ◽  
Georgia Irina Oros

Integral inequalities for ℘-convex functions are established by using a generalised fractional integral operator based on Raina’s function. Hermite–Hadamard type inequality is presented for ℘-convex functions via generalised fractional integral operator. A novel parameterized auxiliary identity involving generalised fractional integral is proposed for differentiable mappings. By using auxiliary identity, we derive several Ostrowski type inequalities for functions whose absolute values are ℘-convex mappings. It is presented that the obtained outcomes exhibit classical convex and harmonically convex functions which have been verified using Riemann–Liouville fractional integral. Several generalisations and special cases are carried out to verify the robustness and efficiency of the suggested scheme in matrices and Fox–Wright generalised hypergeometric functions.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Huriye Kadakal

In this study, firstly we introduce a new concept called “strongly r-convex function.” After that we establish Hermite-Hadamard-like inequalities for this class of functions. Moreover, by using an integral identity together with some well known integral inequalities, we establish several new inequalities for n-times differentiable strongly r-convex functions. In special cases, the results obtained coincide with the well-known results in the literature.


2021 ◽  
Vol 17 (1) ◽  
pp. 37-64
Author(s):  
A. Kashuri ◽  
M.A. Ali ◽  
M. Abbas ◽  
M. Toseef

Abstract In this paper, authors establish a new identity for a differentiable function using generic integral operators. By applying it, some new integral inequalities of trapezium, Ostrowski and Simpson type are obtained. Moreover, several special cases have been studied in detail. Finally, many useful applications have been found.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Mehmet Zeki Sarikaya ◽  
Hasan Ogunmez

We extend the Montgomery identities for the Riemann-Liouville fractional integrals. We also use these Montgomery identities to establish some new integral inequalities. Finally, we develop some integral inequalities for the fractional integral using differentiable convex functions.


Symmetry ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 263 ◽  
Author(s):  
Pshtiwan Mohammed ◽  
Faraidun Hamasalh

In this work, we established new inequalities of Hermite–Hadamard type for convex functions via conformable fractional integrals. Through the conformable fractional integral inequalities, we found some new inequalities of Hermite–Hadamard type for convex functions in the form of classical integrals.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Dumitru Baleanu ◽  
Artion Kashuri ◽  
Pshtiwan Othman Mohammed ◽  
Badreddine Meftah

AbstractIntegral inequality is an interesting mathematical model due to its wide and significant applications in mathematical analysis and fractional calculus. In this study, authors have established some generalized Raina fractional integral inequalities using an $(l_{1},h_{1})$ ( l 1 , h 1 ) -$(l_{2},h_{2})$ ( l 2 , h 2 ) -convex function on coordinates. Also, we obtain an integral identity for partial differentiable functions. As an effect of this result, two interesting integral inequalities for the $(l_{1},h_{1})$ ( l 1 , h 1 ) -$(l_{2},h_{2})$ ( l 2 , h 2 ) -convex function on coordinates are given. Finally, we can say that our findings recapture some recent results as special cases.


Author(s):  
Shin Min Kang ◽  
Ghulam Abbas ◽  
Ghulam Farid ◽  
Waqas Nazeer

In the present research, we will develop some integral inequalities of Hermite Hadamard type for differentiable η-convex function. Moreover, our results include several new and known results as special cases.


Filomat ◽  
2018 ◽  
Vol 32 (16) ◽  
pp. 5595-5609
Author(s):  
Erhan Set

Remarkably a lot of Ostrowski type inequalities involving various fractional integral operators have been investigated by many authors. Recently, Raina [34] introduced a new generalization of the Riemann-Liouville fractional integral operator involving a class of functions defined formally by F? ?,?(x)=??,k=0 ?(k)/?(?k + ?)xk. Using this fractional integral operator, in the present note, we establish some new fractional integral inequalities of Ostrowski type whose special cases are shown to yield corresponding inequalities associated with Riemann-Liouville fractional integral operators.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Yingxia Yang ◽  
Muhammad Shoaib Saleem ◽  
Mamoona Ghafoor ◽  
Muhammad Imran Qureshi

In the present paper, some fractional integral inequalities of Hermite–Hadamard type for functions whose derivatives are generalized h-convex are established. Moreover, several particular cases are also discussed which can be deduced from our results. As special cases, one can obtain several new versions of the results of generalized h-convexity for other various generalizations of convex functions.


Mathematics ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 222 ◽  
Author(s):  
Gauhar Rahman ◽  
Kottakkaran Sooppy Nisar ◽  
Thabet Abdeljawad ◽  
Samee Ullah

The goal of this article is to establish some fractional proportional integral inequalities for convex functions by employing proportional fractional integral operators. In addition, we establish some classical integral inequalities as the special cases of our main findings.


Sign in / Sign up

Export Citation Format

Share Document