scholarly journals Measurability of functions of two variables

1959 ◽  
Vol 1 (1) ◽  
pp. 21-26 ◽  
Author(s):  
J. H. Michael ◽  
B. C. Rennie

SummaryThis paper investigates the existence and equality of the double and repeated integrals of a real function on a plane set. The main result (Theorem 2) is that if a function on a plane Lebesgue measurable set is continuous in one variable and measurable in the other then it is measurable in the plane.

2020 ◽  
Vol 70 (2) ◽  
pp. 305-318
Author(s):  
Anna Kamińska ◽  
Katarzyna Nowakowska ◽  
Małgorzata Turowska

Abstract In the paper some properties of sets of points of approximate continuity and ϱ-upper continuity are presented. We will show that for every Lebesgue measurable set E ⊂ ℝ there exists a function f : ℝ → ℝ which is approximately (ϱ-upper) continuous exactly at points from E. We also study properties of sets of points at which real function has Denjoy property. Some other related topics are discussed.


1983 ◽  
Vol 6 (2) ◽  
pp. 285-295 ◽  
Author(s):  
J. A. Adepoju ◽  
M. Nassif

The effectiveness properties, in Faber regions, of the transposed inverse of a given basic set of polynominals, are investigated in the present paper. A certain inevitable normalizing substitution, is first formulated, to be undergone by the given set to ensure the existence of the transposed inverse in the Faber region. The first main result of the present work (Theorem 2.1), on the one hand, provides a lower bound of the class of functions for which the normalized transposed inverse set is effective in the Faber region. On the other hand, the second main result (Theorem 5.2) asserts the fact that the normalized transposed inverse set of a simple set of polynomials, which is effective in a Faber region, should not necessarily be effective there.


2015 ◽  
Vol 62 (1) ◽  
pp. 1-12
Author(s):  
José A. Guerrero ◽  
Nelson Merentes ◽  
José L. Sánchez

Abstract In this paper we present the concept of total κ-variation in the sense of Hardy-Vitali-Korenblum for a real function defined in the rectangle Iab⊂R2. We show that the space κBV(Iab, R) of real functions of two variables with finite total κ-variation is a Banach space endowed with the norm ||f||κ = |f (a)| + κTV( f, Iab). Also, we characterize the Nemytskij composition operator H that maps the space of functions of two real variables of bounded κ-variation κBV(Iab, R) into another space of a similar type and is uniformly bounded (or Lipschitzian or uniformly continuous).


Author(s):  
Nazih Abderrazzak Gadhi ◽  
Aissam Ichatouhane

A nonsmooth semi-infinite interval-valued vector programming problem is solved in the paper by Jennane et all. (RAIRO-Oper. Res. doi: 10.1051/ro/2020066, 2020). The necessary optimality condition obtained by the authors, as well as its proof, is false. Some counterexamples are given to refute some results on which the main result (Theorem 4.5) is based. For the convinience of the reader, we correct the faulty in those results, propose a correct formulation of Theorem 4.5 and give also a short proof.


1976 ◽  
Vol 19 (4) ◽  
pp. 435-439 ◽  
Author(s):  
D. Ž. Djoković

Let G be a real Lie group, A a closed subgroup of G and B an analytic subgroup of G. Assume that B normalizes A and that AB is closed in G. Then our main result (Theorem 1) asserts that .This result generalizes Lemma 2 in the paper [4], G. Hochschild has pointed out to me that the proof of that lemma given in [4] is not complete but that it can be easily completed.


1984 ◽  
Vol 27 (3) ◽  
pp. 247-259 ◽  
Author(s):  
K. Kaarli

In this paper the study of radicals of finite near-rings is initiated. The main result (Theorem 4.3) gives a description of hereditary radicals having hereditary semisimple classes too. Also it is shown that there exist non-hereditary radicals having hereditary semisimple classes.


1991 ◽  
Vol 33 (2) ◽  
pp. 129-134
Author(s):  
Szilárd GY. Révész ◽  
Imre Z. Ruzsa

If f is a real function, periodic with period 1, we defineIn the whole paper we write ∫ for , mE for the Lebesgue measure of E ∩ [0,1], where E ⊂ ℝ is any measurable set of period 1, and we also use XE for the characteristic function of the set E. Consistent with this, the meaning of ℒp is ℒp [0, 1]. For all real xwe haveif f is Riemann-integrable on [0, 1]. However,∫ f exists for all f ∈ ℒ1 and one would wish to extend the validity of (2). As easy examples show, (cf. [3], [7]), (2) does not hold for f ∈ ℒp in general if p < 2. Moreover, Rudin [4] showed that (2) may fail for all x even for the characteristic function of an open set, and so, to get a reasonable extension, it is natural to weaken (2) towhere S ⊂ ℕ is some “good” increasing subsequence of ℕ. Naturally, for different function classes ℱ ⊂ ℒ1 we get different meanings of being good. That is, we introduce the class of ℱ-good sequences as


Author(s):  
H. D. Miller

SummaryThis paper is essentially a continuation of the previous one (5) and the notation established therein will be freely repeated. The sequence {ξr} of random variables is defined on a positively regular finite Markov chain {kr} as in (5) and the partial sums and are considered. Let ζn be the first positive ζr and let πjk(y), the ‘ruin’ function or absorption probability, be defined by The main result (Theorem 1) is an asymptotic expression for πjk(y) for large y in the case when , the expectation of ξ1 being computed under the unique stationary distribution for k0, the initial state of the chain, and unconditional on k1.


1987 ◽  
Vol 29 (2) ◽  
pp. 229-236
Author(s):  
Tomasz M. Wolniewicz

Let Bn denote the unit ball and Un the unit polydisc in Cn. In this paper we consider questions concerned with inner functions and embeddings of Hardy spaces over bounded symmetric domains. The main result (Theorem 2) states that for a classical symmetric domain D of type I and rank(D) = s, there exists an isometric embedding of Hl(Us) onto a complemented subspace of Hl(D). This should be compared with results of Wojtaszczyk [13] and Bourgain [3, 4] which state that H1(Bn) is isomorphic to Hl(U) while for n>m, Hl(Un) cannot be isomorphically embedded onto a complemented subspace of H1(Um). Since balls are the only bounded symmetric domains of rank 1 and they are of type I, Theorem 2 shows that if rank(D1) = 1, rank(D2) > 1 then H1(D1) is not isomorphic to H1(D2). It is natural to expect this to hold always when rank(D1 ≠ rank(D2) but unfortunately we were not able to prove this.


2015 ◽  
Vol 13 (1) ◽  
Author(s):  
Magdalena Górajska

AbstractThe paper presents a new type of density topology on the real line generated by the pointwise convergence, similarly to the classical density topology which is generated by the convergence in measure. Among other things, this paper demonstrates that the set of pointwise density points of a Lebesgue measurable set does not need to be measurable and the set of pointwise density points of a set having the Baire property does not need to have the Baire property. However, the set of pointwise density points of any Borel set is Lebesgue measurable.


Sign in / Sign up

Export Citation Format

Share Document