Exponential trigonometric convex functions and Hermite-Hadamard type inequalities

2021 ◽  
Vol 71 (1) ◽  
pp. 43-56
Author(s):  
Mahir Kadakal ◽  
İmdat İşcan ◽  
Praveen Agarwal ◽  
Mohamed Jleli

Abstract In this manuscript, we introduce and study the concept of exponential trigonometric convex functions and their some algebraic properties. We obtain Hermite-Hadamard type inequalities for the newly introduced class of functions. We also obtain some refinements of the Hermite-Hadamard inequality for functions whose first derivative in absolute value, raised to a certain power which is greater than one, respectively at least one, is exponential trigonometric convex function. It has been shown that the result obtained with Hölder-İşcan and improved power-mean integral inequalities give better approximations than that obtained with Hölder and improved power-mean integral inequalities.

Filomat ◽  
2021 ◽  
Vol 35 (6) ◽  
pp. 1803-1822
Author(s):  
Saad Butt ◽  
Artion Kashuri ◽  
Jamshed Nasir

In this paper, authors study the concept of (s,m)-exponential type convex functions and their algebraic properties. New generalizations of Hermite-Hadamard type inequality for the (s,m)-exponential type convex function ? and for the products of two (s,m)-exponential type convex functions ? and ? are proved. Some refinements of the (H-H) inequality for functions whose first derivative in absolute value at certain power are (s,m)-exponential type convex are obtain. Finally, many new bounds for special means and new error estimates for the trapezoidal and midpoint formula are provided as well.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Saad Ihsan Butt ◽  
Artion Kashuri ◽  
Muhammad Tariq ◽  
Jamshed Nasir ◽  
Adnan Aslam ◽  
...  

Abstract In this paper, we give and study the concept of n-polynomial $(s,m)$ ( s , m ) -exponential-type convex functions and some of their algebraic properties. We prove new generalization of Hermite–Hadamard-type inequality for the n-polynomial $(s,m)$ ( s , m ) -exponential-type convex function ψ. We also obtain some refinements of the Hermite–Hadamard inequality for functions whose first derivatives in absolute value at certain power are n-polynomial $(s,m)$ ( s , m ) -exponential-type convex. Some applications to special means and new error estimates for the trapezoid formula are given.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Huriye Kadakal

In this study, firstly we introduce a new concept called “strongly r-convex function.” After that we establish Hermite-Hadamard-like inequalities for this class of functions. Moreover, by using an integral identity together with some well known integral inequalities, we establish several new inequalities for n-times differentiable strongly r-convex functions. In special cases, the results obtained coincide with the well-known results in the literature.


2022 ◽  
Vol 6 (1) ◽  
pp. 28
Author(s):  
Tao Yan ◽  
Ghulam Farid ◽  
Hafsa Yasmeen ◽  
Chahn Yong Jung

In the literature of mathematical inequalities, convex functions of different kinds are used for the extension of classical Hadamard inequality. Fractional integral versions of the Hadamard inequality are also studied extensively by applying Riemann–Liouville fractional integrals. In this article, we define (α,h−m)-convex function with respect to a strictly monotone function that unifies several types of convexities defined in recent past. We establish fractional integral inequalities for this generalized convexity via Riemann–Liouville fractional integrals. The outcomes of this work contain compact formulas for fractional integral inequalities which generate results for different kinds of convex functions.


2019 ◽  
Vol 3 (2) ◽  
pp. 29
Author(s):  
Seren Salaş ◽  
Yeter Erdaş ◽  
Tekin Toplu ◽  
Erhan Set

In this paper, firstly we have established a new generalization of Hermite–Hadamard inequality via p-convex function and fractional integral operators which generalize the Riemann–Liouville fractional integral operators introduced by Raina, Lun and Agarwal. Secondly, we proved a new identity involving this generalized fractional integral operators. Then, by using this identity, a new generalization of Hermite–Hadamard type inequalities for fractional integral are obtained.


Author(s):  
Shin Min Kang ◽  
Ghulam Abbas ◽  
Ghulam Farid ◽  
Waqas Nazeer

In the present research, we will develop some integral inequalities of Hermite Hadamard type for differentiable η-convex function. Moreover, our results include several new and known results as special cases.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Saad Ihsan Butt ◽  
Saima Rashid ◽  
Muhammad Tariq ◽  
Miao-Kun Wang

In this work, we introduce the idea of n –polynomial harmonically s –type convex function. We elaborate the new introduced idea by examples and some interesting algebraic properties. As a result, new Hermite–Hadamard, some refinements of Hermite–Hadamard and Ostrowski type integral inequalities are established, which are the generalized variants of the previously known results for harmonically convex functions. Finally, we illustrate the applicability of this new investigation in special functions (hypergeometric function and special mean of real numbers).


2021 ◽  
Vol 104 (4) ◽  
pp. 14-27
Author(s):  
B.R. Bayraktar ◽  
◽  
A.Kh. Attaev ◽  

In this paper, we obtained several new integral inequalities using fractional Riemann-Liouville integrals for convex s-Godunova-Levin functions in the second sense and for quasi-convex functions. The results were gained by applying the double Hermite-Hadamard inequality, the classical Holder inequalities, the power mean, and weighted Holder inequalities. In particular, the application of the results for several special computing facilities is given. Some applications to special means for arbitrary real numbers: arithmetic mean, logarithmic mean, and generalized log-mean, are provided.


Filomat ◽  
2017 ◽  
Vol 31 (20) ◽  
pp. 6575-6584 ◽  
Author(s):  
Muhammad Noor ◽  
Khalida Noor ◽  
Sabah Iftikhar

In this paper, we consider a new class of harmonic convex functions, which is called p-harmonic convex function. Several new Hermite-Hadamard, midpoint, Trapezoidal and Simpson type inequalities for functions whose derivatives in absolute value are p-harmonic convex are obtained. Some special cases are discussed. The ideas and techniques of this paper may stimulate further research.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
M. Rostamian Delavar ◽  
S. Mohammadi Aslani ◽  
M. De La Sen

This paper deals with Hermite-Hadamard-Fejér inequality for (η1,η2)-convex functions via fractional integrals. Some mid-point and trapezoid type inequalities related to Hermite-Hadamard inequality when the absolute value of derivative of considered function is (η1,η2)-convex functions are obtained. Furthermore, a refinement for classic Hermite-Hadamard inequality via fractional integrals is given when a positive (η1,η2)-convex function is increasing.


Sign in / Sign up

Export Citation Format

Share Document