Effect of post-weld heat treatment on microstructure and corrosion properties of multi-layer super duplex stainless steel welds

2021 ◽  
Vol 63 (9) ◽  
pp. 791-796
Author(s):  
Lei Tian ◽  
Zhanqi Gao ◽  
Yongdian Han

Abstract To investigate the influence of post-weld heat treatment on the microstructure and corrosion properties of super duplex stainless steel welded joints, multi-layer multi-pass welding of 2507 super duplex stainless steel by tungsten argon arc welding was performed using an ER2594 welding wire. The microstructures of the welded joints before and after post-weld heat treatment at 1150 °C, 1170 °C and 1190 °C were observed, and the mechanical and corrosion properties were tested. The post-weld heat treatment changed the austenite content and morphology of the welded joint and improved the corrosion resistance of different parts of the weld metal. The choice of various solution heat treatment temperatures affected the change in austenite content in the weld zone and the degree of diffusion and homogenization of the alloy elements. After post-weld heat treatment at 1170 °C, the two-phase ratios in each area of the weld were the most suitable and uniform, and the overall mechanical and corrosion properties of the joint were more uniform.

2019 ◽  
Vol 44 (1) ◽  
pp. 41-47 ◽  
Author(s):  
Isiaka Oluwole Oladele ◽  
Davies Babatunde Alonge ◽  
Timothy Olakunle Betiku ◽  
Emmanuel Ohiomomo Igbafen ◽  
Benjamin Omotayo Adewuyi

The effect of Post Weld Heat Treatment (PWHT) on the microstructure, mechanical and corrosion properties of low carbon steel have been investigated. The welding process was conducted on butt joint using Manual Metal Arc Welding (MMAW) techniques at a welding voltage of 23 V and welding current of 110 A with the use of E6013 and 3.2 mm diameter as filler material. Heat treatment through full annealing was carried out on the welded low carbon steel. The mechanical properties (hardness, impact toughness and tensile properties) of the AW and PWHT samples were determined. The microstructure of the AW and PWHT samples was characterized by means of an optical microscopy. Corrosion behavior of the sample was studied in3.5 wt.% NaCl environment using potentiodynamic polarization method. The results showed that the AW samples has good combination of mechanical and corrosion properties. The microstructure revealed fine grains of pearlite randomly dispersed in the ferrite for the AW base metal (BM) sample while agglomerated and fine particle of epsilon carbide or cementite randomly dispersed on the ferritic phase of the heat affected zone (HAZ) and weld metal (WM), of the AW, respectively. The PWHT samples shows that the annealing process allow diffusion and growth of the fine grains into partial coarse grains of ferrite and pearlite which did not encourage improvement of the properties. Therefore, it was concluded that the welding parameters put in place during welding of the low carbon steel are optimum for quality weld.


2016 ◽  
Vol 21 (2) ◽  
pp. 197-208 ◽  
Author(s):  
Ali Tahaei ◽  
Argelia Fabiola Miranda Perez ◽  
Mattia Merlin ◽  
Felipe Arturo Reyes Valdes ◽  
Gian Luca Garagnani

Abstract In this research, the effect of the addition of nickel powder and the application of a post weld heat treatment (PWHT) on the welding properties of the UNS S32304 lean duplex stainless steel were investigated in order to improve the microstructure and mechanical properties. Nickel powder was directly poured inside the joint gap and mixed with the filler metal during the Gas Tungsten Arc Welding (GTAW) process; moreover, the solution heat treatment was performed at 1100 °C for 10 min. The joints were characterized by optical microscopy (OM) and the evolution of the phase percentages in the different zones was studied by means of the image analysis technique. Tensile and hardness tests were carried out on the joints in order to evaluate the improvement of the mechanical properties. The results showed that both the addition of nickel powder during the welding process and the post weld heat treatment made it possible to improve the mechanical properties of the weld joints. PWHT had the best effect in restoring the equal percentage of ferrite and austenite compared to the addition of nickel powder.


2004 ◽  
Vol 467-470 ◽  
pp. 217-222 ◽  
Author(s):  
R. Badji ◽  
B. Belkessa ◽  
H. Maza ◽  
M. Bouabdallah ◽  
Brigitte Bacroix ◽  
...  

Duplex stainless steels 2205 are widely used in constructional and petrochemical applications because of their good mechanical and corrosion properties. The objective of this work was to study the influence of aging at high temperature on the austenite and d ferrite equilibrium. After welding by TIG process, duplex stainless steel was aged in the range of 800 – 1150 °C temperatures for 60 min. The microstructure was characterized by metallography and X-ray methods. The toughness of welded structure was also measured.


Sign in / Sign up

Export Citation Format

Share Document