scholarly journals Recent Advances in Novel DNA Guiding Nanofabrication and Nanotechnology

2018 ◽  
Vol 4 (1) ◽  
pp. 32-52 ◽  
Author(s):  
Zhiguang Suo ◽  
Jingqi Chen ◽  
Ziheng Hu ◽  
Yihao Liu ◽  
Feifei Xing ◽  
...  

Abstract DNA as life’s genetic material has been widely investigated around the world. In recent years, with the fiery researches on nanomaterials, it also plays an important role in the development of material science due to its extraordinary molecular recognition capability and prominent structural features. In this mini review, we mainly overview the recent progresses of DNA guiding self-assembled nanostructures and nanofabrication. Typical DNA tile-based assembly and DNA origami nanotechnologies are presented, utilizing the recent 3D topology methods to fabricate multidimensional structures with unique properties. Then the site-specific nanomaterials synthesis and nano-DNA recognition on different DNA scaffolds/templates are demonstrated with excellent addressability, biocompatibility and structural programmability. Various nanomaterials, such as metals, carbon family materials, quantum dots, metal-organic frameworks, and DNA-based liquid crystals are briefly summarized. Finally, the present limitation and future promising development directions are discussed in conclusion and perspective. We wish this review would provide useful information toward the broader scientific interests in DNA nanotechnology.

Author(s):  
Yunqi Yang ◽  
Qinyi Lu ◽  
Chao-Min Huang ◽  
Hongji Qian ◽  
Yunlong Zhang ◽  
...  
Keyword(s):  

1969 ◽  
Vol 49 (1) ◽  
pp. 151-158 ◽  
Author(s):  
M. Schnitzer ◽  
J. G. Desjardins

A leachate, collected in the field in a lysimeter placed between the Ae and Bhf horizon of a Humic Podzol in Newfoundland, was analyzed by chemical and spectroscopic methods.About 87% of the dry, ash-free weight of the leachate was fulvic acid, the remainder consisting mainly of polysaccharides and nitrogenous compounds. A comparison of the analytical characteristics of the purified leachate with those of extracted and purified Podzol Bh fulvic acid showed that the main structural features of the two materials were very similar. Judging from its high contents of oxygen-containing functional groups and from its water solubility, the organic matter in the leachate had all the characteristics of an efficient metal–complexing agent, capable of playing a significant role in metal–organic matter interactions in soils.An organic matter–silica sediment was isolated from the leachate, consisting of 47.6% organic matter and of 52.4% of almost pure SiO2∙nH2O. The organic matter in the sediment accounted for about 10% of the organic matter in the leachate. The isolation of the sediment suggests that investigations on interactions between compounds of silicon and humic substances deserve greater attention than they have so far received.


2020 ◽  
Vol 92 (7) ◽  
pp. 1093-1110 ◽  
Author(s):  
Aleksey A. Sidorov ◽  
Natalia V. Gogoleva ◽  
Evgeniya S. Bazhina ◽  
Stanislav A. Nikolaevskii ◽  
Maksim A. Shmelev ◽  
...  

AbstractHeterometallic carboxylate complexes are of paramount interest in pure and applied coordination chemistry. Despite that plurality of such type compounds have been published to date, synthetic aspects of their chemistry often remain in the shadow of intriguing physical properties manifesting by these species. Present review summarizes reliable data on direct synthesis of low nuclearity molecular compounds as well as coordination polymers on their base with carboxylate-bridged {M2Mg} (M = Co2+, Ni2+, Cd2+), {M2Li2} (M = Co2+, Ni2+, Zn2+, VO2+), {M2Ln2} and {M2Ln} (M = Cu2+, Zn2+, Co2+) metal cores. Structural features and stabilization factors are considered and principal outcomes are confirmed by quantum-chemical calculations. Particular attention is paid to consideration of ligand-exchange reactions that allow controllable modification of heterometallic metal core under mild conditions giving diverse molecular complexes with modified ligand environment or Metal-Organic Frameworks with permanent porosity.


Author(s):  
Zhenpeng Yao ◽  
Benjamin Sanchez-Lengeling ◽  
N. Scott Bobbitt ◽  
Benjamin J. Bucior ◽  
Sai Govind Hari Kumar ◽  
...  

Reticular frameworks are crystalline porous materials that form <i>via</i> the self-assembly of molecular building blocks (<i>i.e.</i>, nodes and linkers) in different topologies. Many of them have high internal surface areas and other desirable properties for gas storage, separation, and other applications. The notable variety of the possible building blocks and the diverse ways they can be assembled endow reticular frameworks with a near-infinite combinatorial design space, making reticular chemistry both promising and challenging for prospective materials design. Here, we propose an automated nanoporous materials discovery platform powered by a supramolecular variational autoencoder (SmVAE) for the generative design of reticular materials with desired functions. We demonstrate the automated design process with a class of metal-organic framework (MOF) structures and the goal of separating CO<sub>2</sub> from natural gas or flue gas. Our model exhibits high fidelity in capturing structural features and reconstructing MOF structures. We show that the autoencoder has a promising optimization capability when jointly trained with multiple top adsorbent candidates identified for superior gas separation. MOFs discovered here are strongly competitive against some of the best-performing MOFs/zeolites ever reported. This platform lays the groundwork for the design of reticular frameworks for desired applications.


2020 ◽  
Author(s):  
Zhenpeng Yao ◽  
Benjamin Sanchez-Lengeling ◽  
N. Scott Bobbitt ◽  
Benjamin J. Bucior ◽  
Sai Govind Hari Kumar ◽  
...  

Reticular frameworks are crystalline porous materials that form <i>via</i> the self-assembly of molecular building blocks (<i>i.e.</i>, nodes and linkers) in different topologies. Many of them have high internal surface areas and other desirable properties for gas storage, separation, and other applications. The notable variety of the possible building blocks and the diverse ways they can be assembled endow reticular frameworks with a near-infinite combinatorial design space, making reticular chemistry both promising and challenging for prospective materials design. Here, we propose an automated nanoporous materials discovery platform powered by a supramolecular variational autoencoder (SmVAE) for the generative design of reticular materials with desired functions. We demonstrate the automated design process with a class of metal-organic framework (MOF) structures and the goal of separating CO<sub>2</sub> from natural gas or flue gas. Our model exhibits high fidelity in capturing structural features and reconstructing MOF structures. We show that the autoencoder has a promising optimization capability when jointly trained with multiple top adsorbent candidates identified for superior gas separation. MOFs discovered here are strongly competitive against some of the best-performing MOFs/zeolites ever reported. This platform lays the groundwork for the design of reticular frameworks for desired applications.


2017 ◽  
Vol 121 (13) ◽  
pp. 2748-2758 ◽  
Author(s):  
Suela Xhani ◽  
Shingo Esaki ◽  
Kenneth Huang ◽  
Noa Erlitzki ◽  
Gregory M. K. Poon

2005 ◽  
pp. 187-202
Author(s):  
Stoyan Milev ◽  
Hans Rudolf Bosshard ◽  
Ilian Jelesarov

2018 ◽  
Vol 19 (7) ◽  
pp. 2114 ◽  
Author(s):  
Heini Ijäs ◽  
Sami Nummelin ◽  
Boxuan Shen ◽  
Mauri Kostiainen ◽  
Veikko Linko

DNA nanotechnology provides an excellent foundation for diverse nanoscale structures that can be used in various bioapplications and materials research. Among all existing DNA assembly techniques, DNA origami proves to be the most robust one for creating custom nanoshapes. Since its invention in 2006, building from the bottom up using DNA advanced drastically, and therefore, more and more complex DNA-based systems became accessible. So far, the vast majority of the demonstrated DNA origami frameworks are static by nature; however, there also exist dynamic DNA origami devices that are increasingly coming into view. In this review, we discuss DNA origami nanostructures that exhibit controlled translational or rotational movement when triggered by predefined DNA sequences, various molecular interactions, and/or external stimuli such as light, pH, temperature, and electromagnetic fields. The rapid evolution of such dynamic DNA origami tools will undoubtedly have a significant impact on molecular-scale precision measurements, targeted drug delivery and diagnostics; however, they can also play a role in the development of optical/plasmonic sensors, nanophotonic devices, and nanorobotics for numerous different tasks.


Sign in / Sign up

Export Citation Format

Share Document