scholarly journals Bilayer graphene: physics and application outlook in photonics

Nanophotonics ◽  
2015 ◽  
Vol 4 (1) ◽  
pp. 115-127 ◽  
Author(s):  
Hugen Yan

AbstractLayered materials, such as graphene, transition metal dichacogenides and black phosphorus have attracted lots of attention recently. They are emerging novel materials in electronics and photonics, with tremendous potential in revolutionizing the traditional electronics and photonics industry. Marrying layered material to the nanophotonics is being proved fruitful. With the recent emphasis and development of metasurfaces in nanophotonics, atomically thin materials can find their unique position and strength in this field. In this article, I will focus on one specific two dimensional material: bilayer graphene. Basic physics will be reviewed, such as band-gap opening, electron-phonon interaction, phonon-plasmon interaction and Fano resonances in the optical response. Moreover, I will review the application of bilayer graphene as a sensitive and fast photodetector. An outlook will be given in the final part of the paper.

2014 ◽  
Vol 83 (3) ◽  
pp. 034703 ◽  
Author(s):  
Yusuke Yamashiro ◽  
Koichi Inoue ◽  
Yasuhide Ohno ◽  
Kenzo Maehashi ◽  
Kazuhiko Matsumoto

1999 ◽  
Vol 60 (14) ◽  
pp. 10442-10446 ◽  
Author(s):  
M. Mierzejewski ◽  
J. Zieliński ◽  
P. Entel

2D Materials ◽  
2022 ◽  
Author(s):  
Tiago Campolina Barbosa ◽  
Andreij C. Gadelha ◽  
Douglas A. A. Ohlberg ◽  
Kenji Watanabe ◽  
Takashi Taniguchi ◽  
...  

Abstract In this work, we study the Raman spectra of twisted bilayer graphene samples as a function of their twist-angles (θ), ranging from 0.03º to 3.40º, where local θ are determined by analysis of their associated moiré superlattices, as imaged by scanning microwave impedance microscopy. Three standard excitation laser lines are used (457, 532, and 633 nm wavelengths), and the main Raman active graphene bands (G and 2D) are considered. Our results reveal that electron-phonon interaction influences the G band's linewidth close to the magic angle regardless of laser excitation wavelength. Also, the 2D band lineshape in the θ < 1º regime is dictated by crystal lattice and depends on both the Bernal (AB and BA) stacking bilayer graphene and strain soliton regions (SP) [1]. We propose a geometrical model to explain the 2D lineshape variations, and from it, we estimate the SP width when moving towards the magic angle.


Sign in / Sign up

Export Citation Format

Share Document