scholarly journals On combined optical solitons of the one-dimensional Schrödinger’s equation with time dependent coefficients

Open Physics ◽  
2016 ◽  
Vol 14 (1) ◽  
pp. 65-68 ◽  
Author(s):  
Bulent Kilic ◽  
Mustafa Inc ◽  
Dumitru Baleanu

AbstractThis paper integrates dispersive optical solitons in special optical metamaterials with a time dependent coefficient. We obtained some optical solitons of the aforementioned equation. It is shown that the examined dependent coefficients are affected by the velocity of the wave. The first integral method (FIM) and ansatz method are applied to reach the optical soliton solutions of the one-dimensional nonlinear Schrödinger’s equation (NLSE) with time dependent coefficients.

Mathematics ◽  
2019 ◽  
Vol 7 (11) ◽  
pp. 1124 ◽  
Author(s):  
Saleem Obaidat ◽  
Said Mesloub

In this article we have developed a new explicit four-step linear method of fourth algebraic order with vanished phase-lag and its first derivative. The efficiency of the method is tested by solving effectively the one-dimensional time independent Schrödinger’s equation. The error and stability analysis are studied. Also, the new method is compared with other methods in the literature. It is found that this method is more efficient than these methods.


2012 ◽  
Vol 67 (3-4) ◽  
pp. 141-146 ◽  
Author(s):  
Zhenyun Qina ◽  
Gui Mu

The Gross-Pitaevskii equation (GPE) describing the dynamics of a Bose-Einstein condensate at absolute zero temperature, is a generalized form of the nonlinear Schr¨odinger equation. In this work, the exact bright one-soliton solution of the one-dimensional GPE with time-dependent parameters is directly obtained by using the well-known Hirota method under the same conditions as in S. Rajendran et al., Physica D 239, 366 (2010). In addition, the two-soliton solution is also constructed effectively


Sign in / Sign up

Export Citation Format

Share Document