Imaging the electro-kinetic response of biological tissues with phase-resolved optical coherence tomography

2014 ◽  
Vol 3 (4) ◽  
Author(s):  
Valentin Demidov ◽  
Vladislav Toronov ◽  
Yuan Xu ◽  
Barry Vuong ◽  
Carry Sun ◽  
...  

AbstractIn this study, the electro-kinetic phenomena (EKP) induced in biological tissue by external electric field, while not directly visible in optical coherence tomography (OCT) images, were detected by analyzing their textural speckle features. During application of a low-frequency electric field to the tissue, speckle patterns changed their brightness and shape depending on the local tissue EKP. Since intensities of OCT image speckle patterns were analyzed and discussed in our previous publications, this work is mainly focused on OCT signal phase analysis. The algorithm for extracting local spatial phase variations from unwrapped phases is introduced. The detection of electrically induced optical changes manifest in OCT phase images shows promise for monitoring the fixed charge density changes within tissues through their electro-kinetic responses. This approach may help in the identification and characterization of morphology and function of healthy and pathologic tissues.

2021 ◽  
Author(s):  
Valentin Demidov

This thesis reports on developing a novel approach to imaging the electro-kinetic response of biological tissues with optical coherence tomography (OCT). The changes of backscattered OCT signal from tissues were investigated with a low frequency AC electric field being applied to the tissues. Advanced processing algorithms were developed to analyze the amplitude and phase changes of OCT signal. Two-dimensional electrically induced optical changes (EIOC) amplitude and phase images related to the electro-kinetic response of soft tissues were obtained with depth resolution and compared with structural OCT images. The procedure for removing the background noise from EIOC images was introduced.


2021 ◽  
Author(s):  
Valentin Demidov

This thesis reports on developing a novel approach to imaging the electro-kinetic response of biological tissues with optical coherence tomography (OCT). The changes of backscattered OCT signal from tissues were investigated with a low frequency AC electric field being applied to the tissues. Advanced processing algorithms were developed to analyze the amplitude and phase changes of OCT signal. Two-dimensional electrically induced optical changes (EIOC) amplitude and phase images related to the electro-kinetic response of soft tissues were obtained with depth resolution and compared with structural OCT images. The procedure for removing the background noise from EIOC images was introduced.


2014 ◽  
Vol 3 (4) ◽  
Author(s):  
Lev A. Matveev ◽  
Vladimir Y. Zaitsev ◽  
Aleksander L. Matveev ◽  
Grigory V. Gelikonov ◽  
Valentin M. Gelikonov ◽  
...  

AbstractIn this paper, a brief overview of several recently proposed approaches to elastographic characterization of biological tissues using optical coherence tomography is presented. A common feature of these “unconventional” approaches is that unlike most others, they do not rely on a two-step process of first reconstructing the particle displacements and then performing its error-prone differentiation in order to determine the local strains. Further, several variants of these new approaches were proposed and demonstrated essentially independently and are based on significantly different principles. Despite the seeming differences, these techniques open up interesting prospects not only for independent usage, but also for combined implementation to provide a multifunctional investigation of elasticity of biological tissues and their rheological properties in a wider sense.


2021 ◽  
Vol 7 (1) ◽  
pp. 010304
Author(s):  
Alexey Zykov ◽  
Alexander Matveyev ◽  
Lev Matveev ◽  
Alexander Sovetsky ◽  
Vladimir Zaitsev

A computationally efficient and fairly realistic model of OCT-scan formation in spectral-domain optical coherence tomography is described. The model is based on the approximation of discrete scatterers and ballistic character of scattering, these approximations being widely used in literature. An important feature of the model is its ability to easily account for arbitrary scatterer motions and computationally efficiently generate large sequences of OCT scans for gradually varying configurations of scatterers. This makes the proposed simulation platform very convenient for studies related to the development of angiographic processing of OCT scans for visualization of microcirculation of blood, as well as for studies of decorrelation of speckle patterns in OCT scans due to random (Brownian type) motions of scatterers. Examples demonstrating utilization of the proposed model for generation OCT scans imitating perfused vessels in biological tissues, as well as evolution of speckles in OCT scans due to random translational and rotational motions of localized (but not-point-like) scatterers are given. To the best of our knowledge, such numerical simulations of large series of OCT scans in the presence of various types of motion of scatterers have not been demonstrated before.


2004 ◽  
Author(s):  
Shuliang Jiao ◽  
Tseng-Ming Hsieh ◽  
Jun Ai ◽  
Milos Todorovic ◽  
George Stoica ◽  
...  

2020 ◽  
Author(s):  
Marica Marrese ◽  
Nelda Antonovaité ◽  
Ben K.A. Nelemans ◽  
Ariana Ahmadzada ◽  
Davide Iannuzzi ◽  
...  

AbstractEmbryos are growing organisms with highly heterogeneous properties in space and time. Understanding the mechanical properties is a crucial prerequisite for the investigation of morphogenesis. During the last ten years, new techniques have been developed to evaluate the mechanical properties of biological tissues in vivo. To address this need, we employed a new instrument that, via the combination of micro-indentation with Optical Coherence Tomography (OCT), allows us to determine both, the spatial distribution of mechanical properties of chick embryos and the structural changes in real-time provided by OCT. We report here the stiffness measurements on live chicken mesoderm during somite formation, from the mesenchymal tailbud to the epithelialized somites. The storage modulus of the mesoderm increases from (176±18) Pa in the tail up to (716±117) Pa in the somitic region. The midline has a storage modulus of (947±111) Pa in the caudal presomitic mesoderm, indicating a stiff rod along the body axis, which thereby mechanically supports the surrounding tissue. The difference in stiffness between midline and presomitic mesoderm decreases as the mesoderm forms somites. The viscoelastic response of the somites develops further until somite IV, which is commensurate with the slow process of epithelization of somites between S0 and SIV.Overall, this study provides an efficient method for the biomechanical characterization of soft biological tissues in vivo and shows that the mechanical properties strongly relate to different morphological features of the investigated regions.


2013 ◽  
Vol 38 (14) ◽  
pp. 2629 ◽  
Author(s):  
Adrian F. Peña ◽  
Jack Devine ◽  
Alexander Doronin ◽  
Igor Meglinski

Sign in / Sign up

Export Citation Format

Share Document