On fractional derivatives of the local time of a symmetric stable process as a doubly indexed process

2012 ◽  
Vol 20 (3) ◽  
Author(s):  
Mohamed Ait Ouahra ◽  
Abdelghani Kissami ◽  
Hanae Ouahhabi
2014 ◽  
Vol 22 (2) ◽  
Author(s):  
Mohamed Ait Ouahra ◽  
Abdelghani Kissami ◽  
Hanae Ouahhabi

Abstract.In this paper we prove two main results. The first one is to prove the regularity of fractional derivatives of local time of symmetric stable process with index


2018 ◽  
Vol 21 (2) ◽  
pp. 486-508
Author(s):  
Deniz Karlı

Abstract In this paper, we prove a new generalized Mikhlin multiplier theorem whose conditions are given with respect to fractional derivatives in integral forms with two different integration intervals. We also discuss the connection between fractional derivatives and stable processes and prove a version of Mikhlin theorem under a condition given in terms of the infinitesimal generator of symmetric stable process. The classical Mikhlin theorem is shown to be a corollary of this new generalized version in this paper.


Mathematics ◽  
2019 ◽  
Vol 7 (11) ◽  
pp. 1009
Author(s):  
Luisa Beghin ◽  
Roberto Garra

We study here a generalization of the time-fractional relativistic diffusion equation based on the application of Caputo fractional derivatives of a function with respect to another function. We find the Fourier transform of the fundamental solution and discuss the probabilistic meaning of the results obtained in relation to the time-scaled fractional relativistic stable process. We briefly consider also the application of fractional derivatives of a function with respect to another function in order to generalize fractional Riesz-Bessel equations, suggesting their stochastic meaning.


2016 ◽  
pp. 3973-3982
Author(s):  
V. R. Lakshmi Gorty

The fractional integrals of Bessel-type Fractional Integrals from left-sided and right-sided integrals of fractional order is established on finite and infinite interval of the real-line, half axis and real axis. The Bessel-type fractional derivatives are also established. The properties of Fractional derivatives and integrals are studied. The fractional derivatives of Bessel-type of fractional order on finite of the real-line are studied by graphical representation. Results are direct output of the computer algebra system coded from MATLAB R2011b.


Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 475
Author(s):  
Ewa Piotrowska ◽  
Krzysztof Rogowski

The paper is devoted to the theoretical and experimental analysis of an electric circuit consisting of two elements that are described by fractional derivatives of different orders. These elements are designed and performed as RC ladders with properly selected values of resistances and capacitances. Different orders of differentiation lead to the state-space system model, in which each state variable has a different order of fractional derivative. Solutions for such models are presented for three cases of derivative operators: Classical (first-order differentiation), Caputo definition, and Conformable Fractional Derivative (CFD). Using theoretical models, the step responses of the fractional electrical circuit were computed and compared with the measurements of a real electrical system.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Vasily E. Tarasov

Fractional diffusion equations for three-dimensional lattice models based on fractional-order differences of the Grünwald-Letnikov type are suggested. These lattice fractional diffusion equations contain difference operators that describe long-range jumps from one lattice site to another. In continuum limit, the suggested lattice diffusion equations with noninteger order differences give the diffusion equations with the Grünwald-Letnikov fractional derivatives for continuum. We propose a consistent derivation of the fractional diffusion equation with the fractional derivatives of Grünwald-Letnikov type. The suggested lattice diffusion equations can be considered as a new microstructural basis of space-fractional diffusion in nonlocal media.


Sign in / Sign up

Export Citation Format

Share Document