The properties of Bessel-type fractional derivatives and integrals

2016 ◽  
pp. 3973-3982
Author(s):  
V. R. Lakshmi Gorty

The fractional integrals of Bessel-type Fractional Integrals from left-sided and right-sided integrals of fractional order is established on finite and infinite interval of the real-line, half axis and real axis. The Bessel-type fractional derivatives are also established. The properties of Fractional derivatives and integrals are studied. The fractional derivatives of Bessel-type of fractional order on finite of the real-line are studied by graphical representation. Results are direct output of the computer algebra system coded from MATLAB R2011b.

Filomat ◽  
2015 ◽  
Vol 29 (1) ◽  
pp. 125-131 ◽  
Author(s):  
Emin Özcağ ◽  
İnci Egeb

The incomplete gamma type function ?*(?, x_) is defined as locally summable function on the real line for ?>0 by ?*(?,x_) = {?x0 |u|?-1 e-u du, x?0; 0, x > 0 = ?-x_0 |u|?-1 e-u du the integral divergining ? ? 0 and by using the recurrence relation ?*(? + 1,x_) = -??*(?,x_) - x?_ e-x the definition of ?*(?, x_) can be extended to the negative non-integer values of ?. Recently the authors [8] defined ?*(-m, x_) for m = 0, 1, 2,... . In this paper we define the derivatives of the incomplete gamma type function ?*(?, x_) as a distribution for all ? < 0.


2019 ◽  
Vol 3 (1) ◽  
pp. 1 ◽  
Author(s):  
Dimiter Prodanov

This paper establishes a real integral representation of the reciprocal Gamma function in terms of a regularized hypersingular integral along the real line. A regularized complex representation along the Hankel path is derived. The equivalence with the Heine’s complex representation is demonstrated. For both real and complex integrals, the regularized representation can be expressed in terms of the two-parameter Mittag-Leffler function. Reference numerical implementations in the Computer Algebra System Maxima are provided.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Abdon Atangana ◽  
Aydin Secer

The purpose of this note is to present the different fractional order derivatives definition that are commonly used in the literature on one hand and to present a table of fractional order derivatives of some functions in Riemann-Liouville sense On other the hand. We present some advantages and disadvantages of these fractional derivatives. And finally we propose alternative fractional derivative definition.


2019 ◽  
Vol 22 (2) ◽  
pp. 522-537
Author(s):  
Juan Paulo García-Sandoval

Abstract In this work a relationship between Fractional calculus (FC) and the solution of a first order partial differential equation (FOPDE) is suggested. With this relationship and considering an extra dimension, an alternative representation for fractional derivatives and integrals is proposed. This representation can be applied to fractional derivatives and integrals defined by convolution integrals of the Volterra type, i.e. the Riemann-Liouville and Caputo fractional derivatives and integrals, and the Riesz and Feller potentials, and allows to transform fractional order systems in FOPDE that only contains integer-order derivatives. As a consequence of considering the extra dimension, the geometric interpretation of fractional derivatives and integrals naturally emerges as the area under the curve of a characteristic trajectory and as the direction of a tangent characteristic vector, respectively. Besides this, a new physical interpretation is suggested for the fractional derivatives, integrals and dynamical systems.


Author(s):  
Jian Yuan ◽  
Youan Zhang ◽  
Jingmao Liu ◽  
Bao Shi

Fractional calculus is viewed as a novel and powerful tool to describe the stress and strain relations in viscoelastic materials. Consequently, the motions of engineering structures incorporated with viscoelastic dampers can be described by fractional-order differential equations. To deal with the fractional differential equations, initialization for fractional derivatives and integrals is considered to be a fundamental and unavoidable problem. However, this issue has been an open problem for a long time and controversy persists. The initialization function approach and the infinite state approach are two effective ways in initialization for fractional derivatives and integrals. By comparing the above two methods, this technical brief presents equivalence and unification of the Riemann–Liouville fractional integrals and the diffusive representation. First, the equivalence is proved in zero initialization case where both of the initialization function and the distributed initial condition are zero. Then, by means of initialized fractional integration, equivalence and unification in the case of arbitrary initialization are addressed. Connections between the initialization function and the distributed initial condition are derived. Besides, the infinite dimensional distributed initial condition is determined by means of input function during historic period.


Author(s):  
Vasily E. Tarasov

AbstractA new geometric interpretation of the Riemann-Liouville and Caputo derivatives of non-integer orders is proposed. The suggested geometric interpretation of the fractional derivatives is based on modern differential geometry and the geometry of jet bundles. We formulate a geometric interpretation of the fractional-order derivatives by using the concept of the infinite jets of functions. For this interpretation, we use a representation of the fractional-order derivatives by infinite series with integer-order derivatives. We demonstrate that the derivatives of non-integer orders connected with infinite jets of special type. The suggested infinite jets are considered as a reconstruction from standard jets with respect to order.


Sign in / Sign up

Export Citation Format

Share Document