scholarly journals Sampling Tissue for DNA Analysis of Trees: Trunk Cambium as an Alternative to Canopy Leaves

2005 ◽  
Vol 54 (1-6) ◽  
pp. 265-269 ◽  
Author(s):  
N. Colpaert ◽  
S. Cavers ◽  
E. Bandou ◽  
H. Caron ◽  
G. Gheysen ◽  
...  

Abstract The number of studies of tropical tree species that use molecular tools is increasing, most of which collect leaf tissue for genomic DNA extraction. In tropical trees the canopy is not only frequently inaccessible, but also, once reached, the leaf tissue is often heavily defended against herbivory by high concentrations of anti-predation compounds, which may inhibit downstream applications, particularly PCR. Cambium tissue, accessed directly from the tree trunk at ground level, offers a readily accessible resource that is less hampered by the presence of defensive chemicals than leaf tissue. Here we describe a simple method for obtaining tissue from the cambial zone for DNA extraction and test the applicability of the method in a range of tropical tree species. The method was used successfully to extract DNA from 11 species in nine families. A subset of the DNA extracts was tested in more detail and proved to be highly suitable for AFLP analysis.

2009 ◽  
Vol 52 (5) ◽  
pp. 1217-1224 ◽  
Author(s):  
Ana Lilia Alzate-Marin ◽  
Marcela Corbo Guidugli ◽  
Hilda Hildebrand Soriani ◽  
Carlos Alberto Martinez ◽  
Moacyr Antônio Mestriner

An efficient and rapid DNA minipreparation modified method for frozen samples was developed for five tropical tree species: Copaifera langsdorffii, Hymenaea courbaril, Eugenia uniflora, Tabebuia roseo alba and Cariniana estrellensis. This procedure that dispenses the use of liquid nitrogen, phenol and the addition of proteinase K, is an adaptation of the CTAB-based DNA extraction method. The modifications included the use of PVP to eliminate the polyphenols, only one chloroform-isoamyl alcohol step and the addition of RNase immediately after extraction with chloroform. The yields of the DNA samples ranged from 25.7 to 42.1 µg from 100 mg leaf tissue. The DNA samples extracted by this method were successfully used for PCR (SSR and RAPD) analyses in these five and other twelve tropical tree species.


2021 ◽  
Vol 232 (8) ◽  
Author(s):  
Marina S. Brito ◽  
Cláudia M. Furlan ◽  
Sérgio T. Meirelles ◽  
Silvia R. Souza ◽  
Regina M. Moraes

2008 ◽  
Vol 10 (4) ◽  
pp. 1001-1004 ◽  
Author(s):  
Marcela Corbo Guidugli ◽  
Tatiana de Campos ◽  
Adna Cristina Barbosa de Sousa ◽  
Juliana Massimino Feres ◽  
Alexandre Magno Sebbenn ◽  
...  

2021 ◽  
Author(s):  
Martijn Slot ◽  
Tantawat Nardwattanawong ◽  
Georgia G. Hernández ◽  
Amauri Bueno ◽  
Markus Riederer ◽  
...  

2008 ◽  
Vol 68 (4) ◽  
pp. 781-793 ◽  
Author(s):  
GM. Souza ◽  
RV. Ribeiro ◽  
AM. Sato ◽  
MS. Oliveira

This study addressed some questions about how a suitable leaf carbon balance can be attained for different functional groups of tropical tree species under contrasting forest light environments. The study was carried out in a fragment of semi-deciduous seasonal forest in Narandiba county, São Paulo Estate, Brazil. 10-month-old seedlings of four tropical tree species, Bauhinia forficata Link (Caesalpinioideae) and Guazuma ulmifolia Lam. (Sterculiaceae) as light-demanding pioneer species, and Hymenaea courbaril L. (Caesalpinioideae) and Esenbeckia leiocarpa Engl. (Rutaceae) as late successional species, were grown under gap and understorey conditions. Diurnal courses of net photosynthesis (Pn) and transpiration were recorded with an open system portable infrared gas analyzer in two different seasons. Dark respiration and photorespiration were also evaluated in the same leaves used for Pn measurements after dark adaptation. Our results showed that diurnal-integrated dark respiration (Rdi) of late successional species were similar to pioneer species. On the other hand, photorespiration rates were often higher in pioneer than in late successional species in the gap. However, the relative contribution of these parameters to leaf carbon balance was similar in all species in both environmental conditions. Considering diurnal-integrated values, gross photosynthesis (Pgi) was dramatically higher in gap than in understorey, regardless of species. In both evaluated months, there were no differences among species of different functional groups under shade conditions. The same was observed in May (dry season) under gap conditions. In such light environment, pioneers were distinguished from late successional species in November (wet season), showing that ecophysiological performance can have a straightforward relation to seasonality.


Sign in / Sign up

Export Citation Format

Share Document