scholarly journals Distance Matrix of a Class of Completely Positive Graphs: Determinant and Inverse

2020 ◽  
Vol 8 (1) ◽  
pp. 160-171
Author(s):  
Joyentanuj Das ◽  
Sachindranath Jayaraman ◽  
Sumit Mohanty

AbstractA real symmetric matrix A is said to be completely positive if it can be written as BBt for some (not necessarily square) nonnegative matrix B. A simple graph G is called a completely positive graph if every matrix realization of G that is both nonnegative and positive semidefinite is a completely positive matrix. Our aim in this manuscript is to compute the determinant and inverse (when it exists) of the distance matrix of a class of completely positive graphs. We compute a matrix 𝒭 such that the inverse of the distance matrix of a class of completely positive graphs is expressed a linear combination of the Laplacian matrix, a rank one matrix of all ones and 𝒭. This expression is similar to the existing result for trees. We also bring out interesting spectral properties of some of the principal submatrices of 𝒭.

2016 ◽  
Vol 4 (1) ◽  
Author(s):  
Hiroshi Kurata ◽  
Ravindra B. Bapat

AbstractBy a hollow symmetric matrix we mean a symmetric matrix with zero diagonal elements. The notion contains those of predistance matrix and Euclidean distance matrix as its special cases. By a centered symmetric matrix we mean a symmetric matrix with zero row (and hence column) sums. There is a one-toone correspondence between the classes of hollow symmetric matrices and centered symmetric matrices, and thus with any hollow symmetric matrix D we may associate a centered symmetric matrix B, and vice versa. This correspondence extends a similar correspondence between Euclidean distance matrices and positive semidefinite matrices with zero row and column sums.We show that if B has rank r, then the corresponding D must have rank r, r + 1 or r + 2. We give a complete characterization of the three cases.We obtain formulas for the Moore-Penrose inverse D


2020 ◽  
Vol 36 (36) ◽  
pp. 90-93
Author(s):  
Stephen Drury

A real symmetric matrix $A$ is copositive if $x'Ax \geq 0$ for every nonnegative vector $x$. A matrix is SPN if it is a sum of a real positive semidefinite matrix and a nonnegative matrix. Every SPN matrix is copositive, but the converse does not hold for matrices of order greater than $4$. A graph $G$ is an SPN graph if every copositive matrix whose graph is $G$ is SPN. We show that the triangle graph $T_6$ is not SPN.


2021 ◽  
Vol 9 (1) ◽  
pp. 1-18
Author(s):  
Carolyn Reinhart

Abstract The distance matrix 𝒟(G) of a connected graph G is the matrix containing the pairwise distances between vertices. The transmission of a vertex vi in G is the sum of the distances from vi to all other vertices and T(G) is the diagonal matrix of transmissions of the vertices of the graph. The normalized distance Laplacian, 𝒟𝒧(G) = I−T(G)−1/2 𝒟(G)T(G)−1/2, is introduced. This is analogous to the normalized Laplacian matrix, 𝒧(G) = I − D(G)−1/2 A(G)D(G)−1/2, where D(G) is the diagonal matrix of degrees of the vertices of the graph and A(G) is the adjacency matrix. Bounds on the spectral radius of 𝒟 𝒧 and connections with the normalized Laplacian matrix are presented. Twin vertices are used to determine eigenvalues of the normalized distance Laplacian. The distance generalized characteristic polynomial is defined and its properties established. Finally, 𝒟𝒧-cospectrality and lack thereof are determined for all graphs on 10 and fewer vertices, providing evidence that the normalized distance Laplacian has fewer cospectral pairs than other matrices.


2013 ◽  
Vol 34 (2) ◽  
pp. 355-368 ◽  
Author(s):  
Naomi Shaked-Monderer ◽  
Immanuel M. Bomze ◽  
Florian Jarre ◽  
Werner Schachinger

Author(s):  
Gabriele Eichfelder ◽  
Patrick Groetzner

AbstractIn a single-objective setting, nonconvex quadratic problems can equivalently be reformulated as convex problems over the cone of completely positive matrices. In small dimensions this cone equals the cone of matrices which are entrywise nonnegative and positive semidefinite, so the convex reformulation can be solved via SDP solvers. Considering multiobjective nonconvex quadratic problems, naturally the question arises, whether the advantage of convex reformulations extends to the multicriteria framework. In this note, we show that this approach only finds the supported nondominated points, which can already be found by using the weighted sum scalarization of the multiobjective quadratic problem, i.e. it is not suitable for multiobjective nonconvex problems.


Symmetry ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1529 ◽  
Author(s):  
Abdollah Alhevaz ◽  
Maryam Baghipur ◽  
Hilal Ahmad Ganie ◽  
Yilun Shang

Let G be a simple undirected graph containing n vertices. Assume G is connected. Let D ( G ) be the distance matrix, D L ( G ) be the distance Laplacian, D Q ( G ) be the distance signless Laplacian, and T r ( G ) be the diagonal matrix of the vertex transmissions, respectively. Furthermore, we denote by D α ( G ) the generalized distance matrix, i.e., D α ( G ) = α T r ( G ) + ( 1 − α ) D ( G ) , where α ∈ [ 0 , 1 ] . In this paper, we establish some new sharp bounds for the generalized distance spectral radius of G, making use of some graph parameters like the order n, the diameter, the minimum degree, the second minimum degree, the transmission degree, the second transmission degree and the parameter α , improving some bounds recently given in the literature. We also characterize the extremal graphs attaining these bounds. As an special cases of our results, we will be able to cover some of the bounds recently given in the literature for the case of distance matrix and distance signless Laplacian matrix. We also obtain new bounds for the k-th generalized distance eigenvalue.


Sign in / Sign up

Export Citation Format

Share Document