scholarly journals Bone marrow mesenchymal stem cells overexpressing hepatocyte growth factor ameliorate hypoxic–ischemic brain damage in neonatal rats

2021 ◽  
Vol 12 (1) ◽  
pp. 561-572
Author(s):  
Wen Zeng ◽  
Yu Wang ◽  
Yufeng Xi ◽  
Guoqing Wei ◽  
Rong Ju

Abstract Objectives Hypoxic–ischemic brain damage (HIBD) is a major cause of brain injury in neonates. Bone marrow mesenchymal stem cells (BMSCs) show therapeutic potential for HIBD, and genetic modification may enhance their neuroprotective effects. The goal of this study was to investigate the neuroprotective effects of hepatocyte growth factor (HGF)-overexpressing BMSCs (BMSCs-HGF) against HIBD and their underlying mechanisms. Methods: BMSCs were transfected with HGF using adenoviral vectors. HIBD models were established and then BMSCs were transplanted into the brains of HIBD rats via intraventricular injection. 2,3,5-Triphenyltetrazolium chloride (TTC) staining was used to measure cerebral infarction volumes. In vitro, primary cultured cortical neurons were co-cultured with BMSCs in a Transwell plate system. Oxygen–glucose deprivation (OGD) was applied to imitate hypoxic–ischemic insult, and PD98059 was added to the culture medium to block the phosphorylation of extracellular signal-regulated kinase (ERK). Cell apoptosis was determined using TUNEL staining. The expression of HGF was measured by immunofluorescence, real-time quantitative PCR (RT-qPCR), and western blots. The expression of phosphorylated ERK (p-ERK) and B-cell lymphoma-2 (Bcl-2) was measured by western blots. Results HGF-gene transfection promoted BMSC proliferation. Moreover, BMSCs-HGF decreased HIBD-induced cerebral infarction volumes and enhanced the protective effects of the BMSCs against HIBD. BMSCs-HGF also increased expression of HGF, p-ERK, and Bcl-2 in brain tissues. In vitro, BMSC-HGF protected neurons against OGD-induced apoptosis. Inhibition of ERK phosphorylation abolished the neuroprotective effect of BMSCs-HGF against OGD. Conclusions BMSCs-HGF is a potential treatment for HIBD and that the ERK/Bcl-2 pathway is involved in the underlying neuroprotective mechanism.

Biologicals ◽  
2017 ◽  
Vol 45 ◽  
pp. 15-19 ◽  
Author(s):  
Kaveh Tari ◽  
Amir Atashi ◽  
Saied Kaviani ◽  
Mahshid AkhavanRahnama ◽  
Azadeh Anbarlou ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Yong-Heng Luo ◽  
Juan Chen ◽  
En-Hua Xiao ◽  
Qiu-Yun Li ◽  
Yong-Mei Luo

Demethylating agent zebularine is reported to be capable of inducing differentiation of stem cells by activation of methylated genes, though its function in hepatocyte differentiation is unclear. p38 signal pathway is involved in differentiation of hepatocytes and regulating of DNA methyltransferases 1 (DNMT1) expression. However, little is known about the impact of zebularine on bone marrow mesenchymal stem cells (BMMSCs) and p38 signaling during hepatic differentiation. The present study investigated the effects of zebularine on hepatic differentiation of rabbit BMMSCs, as well as the role of p38 on DNMT1 and hepatic differentiation, with the aim of developing a novel strategy for improving derivation of hepatocytes. BMMSCs were treated with zebularine at concentrations of 10, 20, 50, and 100 μM in the presence of hepatocyte growth factor; changes in the levels of hepatic-specific alpha-fetoprotein and albumin were detected and determined by RT-PCR, WB, and immunofluorescence staining. Expression of DNMT1 and phosphorylated p38 as well as urea production and ICG metabolism was also analyzed. Zebularine at concentrations of 10, 20, and 50 μM could not affect cell viability after 48 h. Zebularine treatment leads to an inhibition of DNMT activity and increase of hepatic-specific proteins alpha-fetoprotein and albumin in BMMSCs in vitro; zebularine addition also induced expression of urea production of and ICG metabolism. p38 signal was activated in BMMSCs simulated with HGF; inhibition of p38 facilitated the synthesis of DNMT1 and albumin in cells. Zebularine restrained DNMT1 and phosphorylated p38 which were induced by HGF. Therefore, this study demonstrated that treatment with zebularine exhibited terminal hepatic differentiation of BMMSCs in vitro in association with hepatocyte growth factor; p38 pathway at least partially participates in zebularine-induced hepatic differentiation of rabbit BMMSCs.


2018 ◽  
Vol 18 ◽  
Author(s):  
Chaitra Venugopal ◽  
Christopher Shamir ◽  
Sivapriya Senthilkumar ◽  
Janitri Venkatachala Babu ◽  
Peedikayil Kurien Sonu ◽  
...  

Stem Cells ◽  
2007 ◽  
Vol 25 (7) ◽  
pp. 1737-1745 ◽  
Author(s):  
Adriana López Ponte ◽  
Emeline Marais ◽  
Nathalie Gallay ◽  
Alain Langonné ◽  
Bruno Delorme ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document