lung fibrosis
Recently Published Documents


TOTAL DOCUMENTS

1822
(FIVE YEARS 596)

H-INDEX

87
(FIVE YEARS 14)

2022 ◽  
Author(s):  
Yilu Zhou ◽  
Rob Ewing ◽  
Donna E. Davies ◽  
Yihua Wang ◽  
Mark Jones

We previously reported that oxidative stress drives pseudohypoxic hypoxia-inducible factor (HIF) pathway activation to promote pathogenetic collagen structure-function in human lung fibrosis (Brereton et al., 2022). Here, through bioinformatic studies we investigate HIF pathway activation status in patients with idiopathic pulmonary fibrosis (IPF) and whether this has prognostic significance. Applying a well-established HIF gene expression signature, we classified publicly available datasets into HIF score-high and score-low groups across multiple tissue compartments. TheHIF scores in lung tissue, bronchoalveolar lavage (BAL) and peripheral blood mononuclear cells (PBMC) were increased in IPF patients and significantly correlated with an oxidative stress signature consistent with pseudohypoxic HIF pathway activation. A high HIF score in BAL and in PBMC was a strong independent predictor of mortality in multivariate analysis. Thus, a validated HIF gene signature predicts survival across tissue compartments in IPF and merits prospective study as a non-invasive biomarker of lung fibrosis progression.


ACS Omega ◽  
2022 ◽  
Author(s):  
Ebtesam A. Mohamad ◽  
Zahraa N. Mohamed ◽  
Mohammed A. Hussein ◽  
Mona S. Elneklawi

2022 ◽  
Vol 12 ◽  
Author(s):  
Xia Guo ◽  
Christudas Sunil ◽  
Guoqing Qian

Obesity is an epidemic worldwide and the obese people suffer from a range of respiratory complications including fibrotic changes in the lung. The influence of obesity on the lung is multi-factorial, which is related to both mechanical injury and various inflammatory mediators produced by excessive adipose tissues, and infiltrated immune cells. Adiposity causes increased production of inflammatory mediators, for example, cytokines, chemokines, and adipokines, both locally and in the systemic circulation, thereby rendering susceptibility to respiratory diseases, and altered responses. Lung fibrosis is closely related to chronic inflammation in the lung. Current data suggest a link between lung fibrosis and diet-induced obesity, although the mechanism remains incomplete understood. This review summarizes findings on the association of lung fibrosis with obesity, highlights the role of several critical inflammatory mediators (e.g., TNF-α, TGF-β, and MCP-1) in obesity related lung fibrosis and the implication of obesity in the outcomes of idiopathic pulmonary fibrosis patients.


Thorax ◽  
2022 ◽  
pp. thoraxjnl-2021-217693
Author(s):  
Haruhiko Furusawa ◽  
Anna L Peljto ◽  
Avram D Walts ◽  
Jonathan Cardwell ◽  
Philip L Molyneaux ◽  
...  

A subset of patients with hypersensitivity pneumonitis (HP) develop lung fibrosis that is clinically similar to idiopathic pulmonary fibrosis (IPF). To address the aetiological determinants of fibrotic HP, we investigated whether the common IPF genetic risk variants were also relevant in study subjects with fibrotic HP. Our findings indicate that common genetic variants in TERC, DSP, MUC5B and IVD were significantly associated with fibrotic HP. These findings provide support for a shared etiology and pathogenesis between fibrotic HP and IPF.


Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 90
Author(s):  
Nicolò Cogno ◽  
Roman Bauer ◽  
Marco Durante

Understanding the pathophysiology of lung fibrosis is of paramount importance to elaborate targeted and effective therapies. As it onsets, the randomly accumulating extracellular matrix (ECM) breaks the symmetry of the branching lung structure. Interestingly, similar pathways have been reported for both idiopathic pulmonary fibrosis and radiation-induced lung fibrosis (RILF). Individuals suffering from the disease, the worldwide incidence of which is growing, have poor prognosis and a short mean survival time. In this context, mathematical and computational models have the potential to shed light on key underlying pathological mechanisms, shorten the time needed for clinical trials, parallelize hypotheses testing, and improve personalized drug development. Agent-based modeling (ABM) has proven to be a reliable and versatile simulation tool, whose features make it a good candidate for recapitulating emergent behaviors in heterogeneous systems, such as those found at multiple scales in the human body. In this paper, we detail the implementation of a 3D agent-based model of lung fibrosis using a novel simulation platform, namely, BioDynaMo, and prove that it can qualitatively and quantitatively reproduce published results. Furthermore, we provide additional insights on late-fibrosis patterns through ECM density distribution histograms. The model recapitulates key intercellular mechanisms, while cell numbers and types are embodied by alveolar segments that act as agents and are spatially arranged by a custom algorithm. Finally, our model may hold potential for future applications in the context of lung disorders, ranging from RILF (by implementing radiation-induced cell damage mechanisms) to COVID-19 and inflammatory diseases (such as asthma or chronic obstructive pulmonary disease).


2022 ◽  
Vol 36 (2) ◽  
Author(s):  
Ramani Soundararajan ◽  
Sai Manasa Varanasi ◽  
Sahebgowda Sidramagowda Patil ◽  
Sriraja Srinivas ◽  
Helena Hernández‐Cuervo ◽  
...  
Keyword(s):  

2022 ◽  
Author(s):  
Yi Li ◽  
Zhufu Shen ◽  
Xiao Jiang ◽  
Yuanyuan Wang ◽  
Zuozhang Yang ◽  
...  

Abstract Background: Radiation-induced lung fibrosis (RILF) is a common complication of thoracic radiotherapy. Alveolar epithelial cells play a crucial role in lung fibrosis via epithelial-mesenchymal transition (EMT). Exosomes derived from mesenchymal stem cells own the beneficial properties to repair and regeneration of damaged tissues, however the underlying mechanisms remain poorly understood. Methods: Mouse mesenchymal stem cells-derived exosomes (mMSCs-Exo) were isolated by differential centrifugation, and their protective effects were assessed in vivo and in vitro , respectively. EMT-associated proteins were measured via western blot assay and/or immunofluorescence staining. The miRNA expression was measured by microarray assay and qPCR. Furthermore, bioinformatics prediction with KEGG analysis, luciferase assay, and rescue experiments were performed to explore the molecular mechanism underlying miR-466f-3p. Results: mMSCs-Exos were efficiently isolated ranging from 90-150 nm with high expression of exosomal markers (CD63, TSG101, and CD9). mMSCs-Exos administration efficiently relieved radiation-induced lung injury with less collagen deposition and lower levels of IL-1β and IL-6. Meanwhile, in vitro results showed mMSCs-Exos treatment obviously reversed EMT process induced by radiation. Among enriched miRNA cargo in exosomes, miR-466f-3p was primarily responsible for the protective effects via inhibition of AKT/GSK3β pathway. Our mechanistic study further demonstrated that c-MET was the direct target of miR-466f-3p, whose restoration partially abrogated mMSCs-Exo-mediated inhibition in both EMT process and AKT/GSK3β signaling activity induced by radiation. Conclusions: Our findings indicated that exosomal miR-466f-3p derived from mMSCs may possess anti-fibrotic properties and prevent radiation-induced EMT through inhibition of AKT/GSK3β via c-MET, providing a promising therapeutic modality for radiation-induced lung fibrosis.


2022 ◽  
Vol 16 (1) ◽  
Author(s):  
Tiphaine Goletto ◽  
Sixtine Decaux ◽  
Vincent Bunel ◽  
Gaëlle Weisenburger ◽  
Jonathan Messika ◽  
...  

Abstract Background In patients receiving single lung transplantation for idiopathic pulmonary fibrosis, worsening of fibrosis of the native lung is usually progressive over time, with no significant effects on gas exchange. Case presentation Here, we describe the cases of two Caucasian male recipients of single lung transplants for idiopathic pulmonary fibrosis, 65 and 62 years of age, who exhibited acute worsening of lung fibrosis after an episode of serious viral infection (cytomegalovirus primo-infection in one case and COVID-19 in the other). In both cases, along with opacification of the native lung over several days, the patients presented acute respiratory failure that required the use of high-flow nasal oxygen therapy. Eventually, hypoxemic respiratory failure resolved, but with rapid progression of fibrosis of the native lung. Conclusion We conclude that acute worsening of fibrosis on the native lung secondary to a severe viral infection should be added to the list of potential complications developing on the native lung after single lung transplantation for idiopathic pulmonary fibrosis.


Sign in / Sign up

Export Citation Format

Share Document