Untersuchungen zur Quantenkondensation

1974 ◽  
Vol 29 (10) ◽  
pp. 1387-1393
Author(s):  
P. L. Lin

Abstract It has recently been proved that quantum condensation can possibly occur only when the thermodynamic limit is formed with respect to all three space dimensions. Following this idea, it is shown that a rotating system is practically one-dimensional and therefore does not permit quantum condensation. The same is true for a charged system in an external magnetic field. However, an exact proof is given only for a second order phase transition.

2016 ◽  
Vol 845 ◽  
pp. 158-161
Author(s):  
S.J. Lamekhov ◽  
Dmitry A. Kuzmin ◽  
Igor V. Bychkov ◽  
I.A. Maltsev ◽  
V.G. Shavrov

Behavior of quasi-one-dimensional multiferoic Ca3CoMnO6 in external magnetic field was investigated. Modelling by Monte Carlo method was performed to show influence of external magnetic field on appearance of polarization and temperature of phase transition in electric subsystem. Magnetization, polarization and energy components for magnetic and electric subsystems dependencies were achieved for different values of external magnetic field. Modelling showed that periodic potential in form of Frenkel-Kontorova makes influence on maximal values and temperature of phase transitions for magnetization and polarization.


2021 ◽  
Vol 63 (8) ◽  
pp. 1090
Author(s):  
С.Н. Мартынов

The ground state of a classical ferromagnet with the noncollinear single-ion anisotropy axes of the two sublattices and antisymmetric and anisotropic symmetric exchanges between the sublattices has been considered in a magnetic field applied in the hard magnetic directions of the crystal. The threshold conditions on the anisotropic interactions parameters determined the ground state among the three possible magnetic phases have been obtained. Depended on the type of the ground state and field direction the transition between the phases occurs as a phase transition first or second order. The value of the antisymmetric exchange above that the reorientation between two noncollinear phases is terminated by the second order phase transition depends on the angle between the local easy axes and the value of single-ion anisotropy. The field dependences of the magnetization and susceptibility have been calculated for the different ground states. The comparison with the results of the magnetic measurements in the highly anisotropic ferromagnet PbMnBO_4 has been made.


2020 ◽  
Vol 62 (2) ◽  
pp. 229
Author(s):  
А.К. Муртазаев ◽  
М.К. Рамазанов ◽  
К.Ш. Муртазаев ◽  
М.А. Магомедов ◽  
М.К. Бадиев

The influence of the external magnetic field on the phase transitions, thermodynamic and magnetic properties of the three-dimensional Ising model of antiferromagnetic on a body-centered cubic lattice taking into account the interactions of the second nearest neighbors is studied by the replica algorithm of the Monte Carlo method. A phase diagram of the dependence of the critical temperature on the external magnetic field has been constructed. It is shown that a second-order phase transition is observed in the considered range of magnetic field values


2000 ◽  
Vol 14 (06) ◽  
pp. 589-602
Author(s):  
R. G. GHULGHAZARYAN

Multisite interaction spin-S models in an external magnetic field are studied recursively on the Bethe-like lattices. The transfer-matrix method is extended to calculate exactly the two-spin correlation functions. The exact expressions for the correlation length and magnetic susceptibility are derived for spin-1/2 models. The singularity of the correlation length with critical index ν = 1 and the proportionality of magnetic susceptibility to correlation length in the second order phase transition region of spin-1/2 ferromagnetic models on the Bethe-like lattices are established analytically.


1980 ◽  
Vol 69 ◽  
pp. 49 ◽  
Author(s):  
Richard L. Williams ◽  
David Bloor ◽  
David N. Batchelder ◽  
Michael B. Hursthouse ◽  
William B. Daniels

Polymer ◽  
2002 ◽  
Vol 43 (4) ◽  
pp. 1473-1481 ◽  
Author(s):  
Fangming Gu ◽  
Masamichi Hikosaka ◽  
Akihiko Toda ◽  
Swapan Kumar Ghosh ◽  
Shinichi Yamazaki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document