Calculations of the Oxygen Isotope Fractionation between Hydration Water of Cations and Free Water

1974 ◽  
Vol 29 (11) ◽  
pp. 1608-1613 ◽  
Author(s):  
P. Bopp ◽  
K. Heinzinger ◽  
P. C. Vogel

The oxygen isotope fractionation factors between the hydration complex of the alkali ions in the gas phase and a free water molecule have been computed on the basis of the energy surfaces calculated by Kistenmacher, Popkie and Clementi for a water molecule in the field of an alkali ion. For comparison with recently measured oxygen isotope fractionation factors in aqueous alkali halide solutions, the gas phase values are multiplied with the corresponding separation factors between water vapor and liquid water thus relating the hydration complex in the gas phase with pure water. Qualitative agreement between computed and observed fractionation factors has been found for H2O and D2O even neglecting the isotope effect connected with the transfer of the hydration complex from the gas phase to the solution. This transfer effect is estimated for H2O by a quantitative comparison of computed and observed oxygen isotope fractionation factors.

1997 ◽  
Vol 52 (11) ◽  
pp. 811-820 ◽  
Author(s):  
Masahisa Kakiuchi

Abstract The D/H ratios of hydrogen gas in equilibrium with aqueous alkali halide solutions were deter-mined at 25 °C, using a hydrophobic platinum catalyst. The hydrogen isotope effect between the solution and pure water changes linearly with the molality of the solution at low concentrations, but deviates from this linearity at higher concentration for all alkali halide solutions. The magnitude of the hydrogen isotope effect is in the order; Kl > Nal > KBr > CsCl ≧ NaBr > KCl > NaCl > LiCl, at concentrations up to a molality of 4 m. The sign and trend of the hydrogen isotope effect is different from that of oxygen. In aqueous alkali halide solutions, the hydrogen isotope effect is influenced by both the cation and the anion species, while the oxygen isotope effect is mainly caused by the cation species. This suggests that the mechanism of hydrogen isotope fractionation between the water molecules in the hydration spheres and the free water molecules differs from the mechanism of the oxygen isotope fractionation. The hydrogen and oxygen isotope effects for alkali halides, except LiCl and NaCl, may be influenced by changes in energy of the hydrogen bonding in free water molecules.


1988 ◽  
Vol 70 (1-2) ◽  
pp. 183 ◽  
Author(s):  
R.N. Clayton ◽  
T.K. Mayeda ◽  
J.R. Goldsmith ◽  
H. Chiba ◽  
T. Chacko

1981 ◽  
Vol 53 (1) ◽  
pp. 55-62 ◽  
Author(s):  
Hitoshi Chiba ◽  
Minoru Kusakabe ◽  
Shin-Ichi Hirano ◽  
Sadao Matsuo ◽  
Shigeyuki Somiya

2020 ◽  
Vol 105 (5) ◽  
pp. 756-763
Author(s):  
Sri Budhi Utami ◽  
Vincent J. van Hinsberg ◽  
Bassam Ghaleb ◽  
Arnold E. van Dijk

Abstract Gypsum (CaSO4·2H2O) provides an opportunity to obtain information from both the oxygen isotopic composition of the water and sulfate of its formation waters, where these components are commonly sourced from different reservoirs (e.g., meteoric vs. magmatic). Here, we present δ18O values for gypsum and parent spring waters fed by the Kawah Ijen crater lake in East Java, Indonesia, and from these natural samples derive gypsum-fluid oxygen isotope fractionation factors for water and sulfate group ions of 1.0027 ± 0.0003‰ and 0.999 ± 0.001‰, respectively. Applying these fractionation factors to a growth-zoned gypsum stalactite that records formation waters from 1980 to 2008 during a period of passive degassing, and gypsum cement extracted from the 1817 eruption tephra fall deposit, shows that these fluids were in water-sulfate oxygen isotopic equilibrium. However, the 1817 fluid was >5‰ lighter. This indicates that the 1817 pre-eruption lake was markedly different, and had either persisted for a much shorter duration or was more directly connected to the underlying magmatic-hydrothermal system. This exploratory study highlights the potential of gypsum to provide a historical record of both the δ18Owater and δ18Osulfate of its parental waters, and provides insights into the processes acting on volcanic crater lakes or any other environment that precipitates gypsum.


Sign in / Sign up

Export Citation Format

Share Document