scholarly journals Delayed-choice Measurement and Temporal Nonlocality

2001 ◽  
Vol 56 (1-2) ◽  
pp. 202-204 ◽  
Author(s):  
Ilki Kim ◽  
Günter Mahler

AbstractWe study for a composite quantum system with a quantum Turing architecture the temporal non-locality of quantum mechanics by using the temporal Bell inequality, which will be derived for a discretized network dynamics by identifying the subsystem indices with (discrete) parameter time. However, the direct “observation” of the quantum system will lead to no violation of the temporal Bell inequality and to consistent histories of any subsystem. Its violation can be demonstrated, though, for a delayedchoice measurement

2021 ◽  
Vol 3 (1) ◽  
pp. 53-67
Author(s):  
Ghenadie Mardari

The phenomenon of quantum erasure exposed a remarkable ambiguity in the interpretation of quantum entanglement. On the one hand, the data is compatible with the possibility of arrow-of-time violations. On the other hand, it is also possible that temporal non-locality is an artifact of post-selection. Twenty years later, this problem can be solved with a quantum monogamy experiment, in which four entangled quanta are measured in a delayed-choice arrangement. If Bell violations can be recovered from a “monogamous” quantum system, then the arrow of time is obeyed at the quantum level.


2019 ◽  
Vol 17 (02) ◽  
pp. 1950011
Author(s):  
Davide Pastorello

It is well known that quantum mechanics admits a geometric formulation on the complex projective space as a Kähler manifold. In this paper, we consider the notion of mutual information among continuous random variables in relation to the geometric description of a composite quantum system introducing a new measure of total correlations that can be computed in terms of Gaussian integrals.


Author(s):  
Craig Callender

Two of quantum mechanics’ more famed and spooky features have been invoked in defending the idea that quantum time is congenial to manifest time. Quantum non-locality is said by some to make a preferred foliation of spacetime necessary, and the collapse of the quantum wavefunction is held to vindicate temporal becoming. Although many philosophers and physicists seek relief from relativity’s assault on time in quantum theory, assistance is not so easily found.


Author(s):  
Michael Silberstein ◽  
W.M. Stuckey ◽  
Timothy McDevitt

The main thread of chapter 4 introduces some of the major mysteries and interpretational issues of quantum mechanics (QM). These mysteries and issues include: quantum superposition, quantum nonlocality, Bell’s inequality, entanglement, delayed choice, the measurement problem, and the lack of counterfactual definiteness. All these mysteries and interpretational issues of QM result from dynamical explanation in the mechanical universe and are dispatched using the authors’ adynamical explanation in the block universe, called Relational Blockworld (RBW). A possible link between RBW and quantum information theory is provided. The metaphysical underpinnings of RBW, such as contextual emergence, spatiotemporal ontological contextuality, and adynamical global constraints, are provided in Philosophy of Physics for Chapter 4. That is also where RBW is situated with respect to retrocausal accounts and it is shown that RBW is a realist, psi-epistemic account of QM. All the relevant formalism for this chapter is provided in Foundational Physics for Chapter 4.


2020 ◽  
Vol 18 (06) ◽  
pp. 2050030
Author(s):  
Satoya Imai

The hydrodynamic representation of quantum mechanics describes virtual flow as if a quantum system were fluid in motion. This formulation illustrates pointlike vortices when the phase of a wavefunction becomes nonintegrable at nodal points. We study the dynamics of such pointlike vortices in the hydrodynamic representation for a two-particle wavefunction. In particular, we discuss how quantum entanglement influences vortex–vortex dynamics. For this purpose, we employ the time-dependent quantum variational principle combined with the Rayleigh–Ritz method. We analyze the vortex dynamics and establish connections with Dirac’s generalized Hamiltonian formalism.


1988 ◽  
Vol 43 (2) ◽  
pp. 110-114
Author(s):  
O. E. Rössler

Abstract A new experiment in the foundations of quantum mechanics is proposed. The existence of correlated photons -first seen by Wheeler -can be taken as a hint to devise a ‘‘double-wing’’ delayed choice experiment in Wheeler’s sense. A path choice (polarization choice) measurement made on the one side should then block an interference type measurement made on the other side (‘‘distant choice’’). A precondition for the combined measurement to work in theory is that the correlated photons used are of the ‘‘prepolarized’’ (Selleri) rather than the ‘‘unpolarized’’ (Böhm) type. A first EPR experiment involving prepolarized photons was recently performed by Alley and Shih. It may be used as a partial experiment within the proposed experiment.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
R. E. Kastner

It is pointed out that a slight variation on the Wheeler Delayed Choice Experiment presents the same challenge to orthodox quantum mechanics as Maudlin-type contingent absorber experiments present to the Transactional Interpretation (TI). Therefore, the latter cannot be used as a basis for refutation of TI.


Sign in / Sign up

Export Citation Format

Share Document