Thermodynamic Properties of EuCl2 and the NaCl-EuCl2 System

2001 ◽  
Vol 56 (9-10) ◽  
pp. 647-652 ◽  
Author(s):  
F. Da Silva ◽  
L. Rycerz ◽  
M. Gaune-Escard

Abstract The temperature and enthalpy of the phase transition and fusion of EuCl2 were determined and found to be 1014 K, 11.5 kJ mol-1and 1125 K, 18.7 kJ mol-1 , respectively. Addition­ ally, the heat capacity of solid EuCl2 was measured by Differential Scanning Calorimetry in the temperature range 306 -1085 K. The results were fitted to the linear equation C0p,m = (68.27 + 0.0255 T/K) J mol -1 K-1 in the temperature range 306 -900 K. Due to discrepancies in the liter­ ature on the temperature of fusion of EuCl2, the determination of the NaCl-EuCl2 phase diagram was repeated. It consists of a simple eutectic equilibrium at Teut = 847 K with x(EuCl2) = 0.49.

2004 ◽  
Vol 59 (11) ◽  
pp. 825-828
Author(s):  
L. Rycerz ◽  
E. Ingier-Stocka ◽  
B. Ziolek ◽  
S. Gadzuric ◽  
M. Gaune-Escard

The heat capacity of solid and liquid LaBr3 was measured by Differential Scanning Calorimetry (DSC) in the temperature range 300 - 1100 K. The obtained results were fitted by a polynomial temperature dependence. The enthalpy of fusion of LaBr3 was also measured. By combination of these results with the literature data on the entropy, S0m (LaBr3, s, 298.15 K) and the standard molar enthalpy of formation, ΔformH0m (LaBr3, s, 298.15 K), the thermodynamic functions of lanthanum tribromide were calculated up to 1300 K


1982 ◽  
Vol 60 (14) ◽  
pp. 1853-1856 ◽  
Author(s):  
Eva I. Vargha-Butler ◽  
A. Wilhelm Neumann ◽  
Hassan A. Hamza

The specific heats of five polymers were determined by differential scanning calorimetry (DSC) in the temperature range of 300 to 360 K. The measurements were performed with polymers in the form of films, powders, and granules to clarify whether or not DSC specific heat values are dependent on the diminution of the sample. It was found that the specific heats for the bulk and powdered form of the polymer samples are indistinguishable within the error limits, justifying the determination of specific heats of powders by means of DSC.


2015 ◽  
Vol 59 (1) ◽  
pp. 109-118 ◽  
Author(s):  
Jolanta Tomaszewska-Gras ◽  
Sławomir Bakier ◽  
Kamila Goderska ◽  
Krzysztof Mansfeld

Abstract Thermodynamic properties of selected honeys: glass transition temperature (Tg), the change in specifi c heat capacity (ΔCp), and enthalpy (ΔH) were analysed using differential scanning calorimetry (DSC) in relation to the composition i.e. water and sugar content. Glass transition temperatures (Tg) of various types of honey differed significantly (p<0.05) and ranged from -49.7°C (polyfloral) to -34.8°C (sunflower). There was a strong correlation between the Tg values and the moisture content in honey (r = -0.94). The degree of crystallisation of the honey also influenced the Tg values. It has been shown that the presence or absence of sugar crystals influenced the glass transition temperature. For the decrystallised honeys, the Tg values were 6 to 11°C lower than for the crystallised honeys. The more crystallised a honey was, the greater the temperature difference was between the decrystallised and crystallized honey. In conclusion, to obtain reliable DSC results, it is crucial to measure the glass transition after the complete liquefaction of honey.


2015 ◽  
Vol 39 (3) ◽  
pp. 1938-1942 ◽  
Author(s):  
Yohann Corvis ◽  
Marie-Claude Menet ◽  
Philippe Espeau

The exact solid–liquid equilibrium between ascorbic acid and acetaminophen was established combining high performance liquid chromatography and differential scanning calorimetry.


2018 ◽  
Vol 60 (3) ◽  
pp. 618
Author(s):  
Л.Т. Денисова ◽  
Л.А. Иртюго ◽  
В.В. Белецкий ◽  
Н.В. Белоусова ◽  
В.М. Денисов

AbstractPr2Ge2O7 and Nd2Ge2O7 were obtained via solid-phase synthesis from Pr2O3 ( Nd2O3 ) and GeO2 with multistage firing in air within 1273–1473 K. A temperature effect on molar heat capacity of the oxide compounds was measured with a differential scanning calorimetry. Their thermodynamic properties were calculated from the C _ P = f ( T ) dependences.


Sign in / Sign up

Export Citation Format

Share Document