Density Functional Theory and ab initio Hartree-Fock Calculations of Molecular Structure and Vibrational Spectra of Anilinium Nitrate

2008 ◽  
Vol 63 (10-11) ◽  
pp. 712-720 ◽  
Author(s):  
Davut Avcı ◽  
Adil Başoğlu ◽  
Yusuf Atalay

The molecular geometry, vibrational frequencies, infrared intensities, Raman scattering activities and several thermodynamic parameters of anilinium nitrate in the ground state have been calculated by both Hartree-Fock (HF) and three density functional theory (DFT) methods (B3LYP, BLYP and B3PW91) using the 6-31G(d) basis set. The results of the optimized molecular structure are presented and compared with the experimental X-ray structure. The optimized geometric bond lengths are described very well by the HF method while bond angles are reproduced more accurately by the DFT methods. Comparison between the observed fundamental vibrational frequencies of anilinium nitrate and the results of DFT and HF methods indicates that B3LYP is superior to the scaled HF, BLYP and B3PW91 approaches for molecular vibrational problems. The computed vibrational frequencies are used to determine the types of molecular motions associated with each of the experimental bands observed. In addition, calculated results are related to the linear correlation plot of computed data versus experimental geometric parameters and IR data.

2016 ◽  
Vol 34 (4) ◽  
pp. 886-904 ◽  
Author(s):  
Meryem Evecen ◽  
Hasan Tanak

AbstractIn this paper, the molecular geometry, vibrational frequencies and chemical shifts of (6-Methoxy-2-oxo-2H-chromen-4-yl)methyl pyrrolidine-1-carbodithioate in the ground state have been calculated using the Hartree-Fock and density functional methods with the 6-311++G(d,p) basis set. To investigate the nonlinear optical properties of the title compound, the polarizability and the first hyperpolarizability were calculated. The conformational properties of the molecule have been determined by analyzing molecular energy properties. Using the time dependent density functional theory, electronic absorption spectra have been calculated. Frontier molecular orbitals, natural bond orbitals, natural atomic charges and thermodynamical parameters were also investigated by using the density functional theory calculations.


2010 ◽  
Vol 65 (1-2) ◽  
pp. 107-112 ◽  
Author(s):  
Yusuf Sert ◽  
Fatih Ucun ◽  
Mustafa Böyükata

AbstractThe molecular structures, vibrational frequencies, and corresponding vibrational assignments of 2-amino-3-, 4-, and 5-nitropyridine have been calculated by using ab initio Hartree-Fock (HF) and density functional theory (B3LYP) methods with 6-311++G(d,p) basis set level. The calculated vibrational frequencies and optimized geometric parameters (bond lengths and bond angles) were found to be in well agreement with the experimental data. The comparison of the observed and the calculated results showed that the scaled B3LYP method is superior to the scaled HF method for both the vibrational frequencies and the geometric parameters. For well fitting the calculated and the experimental frequencies we used scale factors obtained from the ratio of the frequency values of the strongest peaks in the calculated and the experimental spectra. These obtained scales seem to cause the better agreement of the gained vibrations to the experimental data.


2019 ◽  
Vol 32 (2) ◽  
pp. 401-407
Author(s):  
M. Dinesh Kumar ◽  
P. Rajesh ◽  
R. Priya Dharsini ◽  
M. Ezhil Inban

The quantum chemical calculations of organic compounds viz. (E)-1-(2,6-bis(4-chlorophenyl)-3-ethylpiperidine-4-ylidene)-2-phenyl-hydrazine (3ECl), (E)-1-(2,6-bis(4-chlorophenyl)-3-methylpiperidine-4-ylidene)-2-phenylhydrazine (3MCl) and (E)-1-(2,6-bis(4-chloro-phenyl)-3,5-dimethylpiperidine-4-ylidene)-2-phenylhydrazine (3,5-DMCl) have been performed by density functional theory (DFT) using B3LYP method with 6-311G (d,p) basis set. The electronic properties such as Frontier orbital and band gap energies have been calculated using DFT. Global reactivity descriptor has been computed to predict chemical stability and reactivity of the molecule. The chemical reactivity sites of compounds were predicted by mapping molecular electrostatic potential (MEP) surface over optimized geometries and comparing these with MEP map generated over crystal structures. The charge distribution of molecules predict by using Mulliken atomic charges. The non-linear optical property was predicted and interpreted the dipole moment (μ), polarizability (α) and hyperpolarizability (β) by using density functional theory.


Sign in / Sign up

Export Citation Format

Share Document