Onset of Double Diffusive Convection in a Thermally Modulated Fluid-Saturated Porous Medium

2008 ◽  
Vol 63 (5-6) ◽  
pp. 291-300 ◽  
Author(s):  
Beer S. Bhadauria ◽  
Aalam Sherani

The onset of double diffusive convection in a sparsely packed porous medium was studied under modulated temperature at the boundaries, and a linear stability analysis has been made. The primary temperature field between the walls of the porous layer consisted of a steady part and a timedependent periodic part and the Galerkin method and the Floquet were used. The critical Rayleigh number was found to be a function of frequency and amplitude of modulation, Prandtl number, porous parameter, diffusivity ratio and solute Rayleigh number.

2006 ◽  
Vol 61 (7-8) ◽  
pp. 335-344 ◽  
Author(s):  
Beer Singh Bhadauria

Linear stability analysis is performed for the onset of thermosolutal convection in a horizontal fluid layer with rigid-rigid boundaries. The temperature field between the walls of the fluid layer consists of two parts: a steady part and a time-dependent periodic part that oscillates with time. Only infinitesimal disturbances are considered. The effect of temperature modulation on the onset of thermosolutal convection has been studied using the Galerkin method and Floquet theory. The critical Rayleigh number is calculated as a function of frequency and amplitude of modulation, Prandtl number, diffusivity ratio and solute Rayleigh number. Stabilizing and destabilizing effects of modulation on the onset of double diffusive convection have been obtained. The effects of the diffusivity ratio and solute Rayleigh number on the stability of the system are also discussed.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Ramesh Chand ◽  
G. C. Rana

Double diffusive convection in a horizontal layer of Maxwell viscoelastic fluid in a porous medium in the presence of temperature gradient (Soret effects) and concentration gradient (Dufour effects) is investigated. For the porous medium Darcy model is considered. A linear stability analysis based upon normal mode technique is used to study the onset of instabilities of the Maxwell viscolastic fluid layer confined between two free-free boundaries. Rayleigh number on the onset of stationary and oscillatory convection has been derived and graphs have been plotted to study the effects of the Dufour parameter, Soret parameter, Lewis number, and solutal Rayleigh number on stationary convection.


2018 ◽  
Vol 62 (3) ◽  
pp. 233-240
Author(s):  
Gian C. Rana ◽  
Ramesh Chand

Double-diffusive convection in a horizontal layer of nanofluid in a porous medium is studied. The couple-stress fluid model is considered to describe the rheological behavior of the nanofluid and for porous medium Darcy model is employed. The model applied for couple stress nanofluid incorporates the effect of Brownian motion and thermophoresis. We have assumed that the nanoparticle concentration flux is zero on the boundaries which neutralizes the possibility of oscillatory convection and only stationary convection occurs. The dispersion relation describing the effect of various parameters is derived by applying perturbation theory, normal mode analysis method and linear stability theory. The impact of various physical parameters, like the couple stress parameter, medium porosity, solutal Rayleigh Number, thermo-nanofluid Lewis number, thermo-solutal Lewis number, Soret parameter and Dufour parameter have been examined on the stationary convection. It is observed that the couple stress parameter, thermo-nanofluid Lewis number, thermo-solutal Lewis number, Soret parameter and Dufour parameter have stabilizing effects on the stationary convection whereas the solutal Rayleigh number and Dufour parameter have very small effect on the system.


Sign in / Sign up

Export Citation Format

Share Document